
CTU CAN FD
IP CORE

Testbench Architecture

LOGIC DESIGN SERVICES l.t.d.

February 1, 2026

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

Document

Version

Author Date Change description

0.1 Ondrej Ille 04-2021 Initial version

0.2 Ondrej Ille 03-2025 Replace GHDL with NVC

0.3 Ondrej Ille 06-2025 Proof-read, add compilation guide. Update �gures and add

�Functional coverage agent�. Remove �integrated� VIP mode as

experimental.

i

Contents

1 Introduction 1

1.1 Test environment . 1

1.2 Supported simulators . 2

2 Testbench architecture 3

2.1 Compiling the testbench . 3

2.2 VIP Interface . 4

2.3 Test execution �ow . 5

2.4 Communication mechanisms . 5

2.5 Report mechanisms . 5

2.6 Random number generation . 6

2.7 Agents . 6

2.7.1 Clock agent . 6

2.7.2 Reset agent . 6

2.7.3 Memory bus agent . 6

2.7.4 CAN agent . 6

2.7.5 Timestamp agent . 8

2.7.6 Interrupt agent . 8

2.7.7 Test probe agent . 8

2.7.8 Feature test agent . 9

2.7.9 Reference test agent . 9

2.7.10 Functional coverage agent . 9

2.8 Test types . 9

2.8.1 Compliance tests . 9

PLI Interface . 10

2.8.2 Reference tests . 11

2.8.3 Feature tests . 12

ii

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

1. INTRODUCTION

1. Introduction

This document describes test-bench of CTU CAN FD. It provides guide to integrate main CTU CAN FD test-bench

into other (e.g. SoC level) test-bench, and it explains types of tests available. CTU CAN FD contains following tests /

test-benches:

1. Main test-bench with following types of tests:

� Compliance tests - Verify compliance of CTU CAN FD to ISO11868-1 2015. Contains all tests from ISO

16845-1 2016. To run these tests, you need Compliance test library compiled and linked to simulation via

PLI. This library is a submodule of CTU CAN FD repository.

� Feature tests - Verify features of CTU CAN FD thah are not directly related to compliance with ISO11898-1

2015 (e.g. TX/RX bu�ers, Interrupts, special modes, frame �ltering, etc.).

� Reference tests - Each test applies stimulus recorded from reference implementation of CAN protocol, checks

that CTU CAN FD can receive such sequence, and accepts frame correctly (black-box testing of cooperability).

2. RX bu�er unit test - RX bu�er has its own block-level test-bench. It is used to verify corner-cases of RX Bu�er

FIFO.

This document focuses on main CTU CAN FD test-bench, and further re�ers to it only as test-bench. It has following

features:

� Testbench is written in VHDL, compliant with VHDL 2008.

� Reference model of CAN bus communication that is used in compliance tests, is written in C++ 17. Reference

model is part of Compliance test library. Compliance library is comiled as shared object library (.so), and linked to the

simulation. Test-bench communicates with Compliance library via VPI interface (GHDL speci�c) or VHPI interface

(IEEE 1076 standard). There is a separate library for each supported simulator. For compiling Compliance test

library, re�er to documentation in commercial delivery of Compliance library. Compilation is required for con�guring

the path of CTU CAN FD VIP inside TB.

� All test functionality is abstracted to CTU CAN FD VIP.

1.1 Test environment

CTU CAN FD development uses following dependecies/tools:

� NVC - VHDL simulator

� GTKWave - waveform viewer.

1

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

1. INTRODUCTION

� Vunit - Unit test framework for VHDL.

Re�er to CTU CAN FD repository for ready-made docker image with all the dependencies installed.

1.2 Supported simulators

CTU CAN FD test-bench currently supports following simulators:

� NVC - Use at least version 1.16.2

� VCS - Use at least version V2023-12

2

2. Testbench architecture

Test-bench consists of following parts:

� CTU CAN FD VIP - contains all test code, test sequences, libraries, packages and agents. CTU CAN FD VIP

communicates with Compliance test library via a PLI interface.

� CTU CAN FD (DUT) - contains RTL.

Further in this document, CTU CAN FD VIP is re�ered to only as VIP. CTU CAN FD design is re�ered to as DUT.

Block diagram of CTU CAN FD test-bench is shown in Figure 2.1.

DUT

CTU CAN FD VIP

Memory
 bus
 Agent

Clock
Agent

Reset
Agent

Compliance
 test Agent
(CAN Agent)

Feature test
 Agent

Reference
test Agent

Test
controller
 agent

Functional
Coverage
 agent

Compliance
 test
 library

Interrupt
 Agent

Reset

System
 clock

Memory
 bus

Interrupt

Test-bench top

CAN bus

Reference
data sets

Vunit
manager
 process

VIP
control

Timestamp
 Agent

Timestamp

Test probe
 Agent

Test probe

Figure 2.1: Test-bench block diagram

2.1 Compiling the testbench

To compile the design and testbench execute following steps:

1. Compile all �.vhd� �les from �rtl/slf_rtl.yml� source list �le into a �ctu_can_fd_rtl� library.

2. Build the compliance test library. See [3] for details.

3

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

3. Choose which �tb_top� wrapper you will be running. There are following wrappers available:

(a) Vunit - Choose if you will be running with VUnit

(b) Simple - If you will be running without Vunit

4. Compile all �.vhd� �les from �test/slf_tb_dependencies_<tb_type>.yml� source list �le to �ctu_can_fd_tb�

library. <tb_type> is either �vunit� or �simple� based on previous step.

5. Compile all �les from �test/slf_tb_common.yml� to �ctu_can_fd_tb� library.

6. Compile all �les from �test/slf_tb_top_<tb_type>.yml� to �ctu_can_fd_tb� library.

2.2 VIP Interface

CTU CAN FD VIP is connected to DUT via interfaces shown in Table 2.1.

Interface
Signals Connected to Description

Reset res_n Reset agent Control of asynchronous reset of DUT.
System clock clk_sys Clock agent Control of DUTs clock.
DFT support scan_enable Test port agent Control of DUTs scan mode.

CAN bus
can_tx Compliance , Reference,

Feature test agents
Connection to CAN bus (driving CAN RX and
monitoring CAN TX of DUT).can_rx

Memory bus

scs

Memory bus agent

Chip select
swr Write enable
srd Read enable
sbe Byte enables
write_data Write data to DUT.
read_data Read data from DUT.
address Memory/Register address.

Interrupt int Interrupt agent Monitoring of DUTs interrupt output.

Test probe test_probe Feature test agent
Monitoring of DUT �test port� for various test
features. Required only for feature tests.

Timestamp timestamp Timestamp agent Control of DUTs timestamp input.

VIP control
test_start

Test Controller agent
Request to start test.

test_done Indication test has �nished.
test_success Test result (1 - passed, 0 - failed).

Table 2.1: CTU CAN FD VIP interface signals

The behavior of VIP is following:

� VIP drives res_n of DUT.

� VIP generates clock signal for DUT (period is given by cfg_sys_clk_period generic of VIP).

� VIP monitors can_tx pin of DUT and drives can_rx pin of DUT (generates and monitors CAN frames).

� VIP generates memory transactions on its Memory bus to access registers of DUT.

� VIP monitors int pin of DUT.

4

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

� VIP monitors test_probe pin of DUT.

� VIP drives scan_enable pin of DUT.

� VIP is integrated in TB as on Figure 2.1 and simulation is controlled by Vunit manager (See tb_top_ctu_can_fd.vhd)

2.3 Test execution �ow

Control of VIP by test-bench is following:

1. Testbench sets test_start = '1'.

2. Testbench waits until test_done = '1'.

3. Testbench checks test_success. If test_success = '1', the test passed, otherwise test failed.

All tests follow basic test sequence: test_start = '1' is interpreted by Test controller agent. Test controller agent

invokes di�erent agents based on type of test:

1. Compliance tests - Control over TB is handed over PLI to Compliance test library (shared object library linked to

simulation). Compliance test library forks its own test thread, and executes test sequence in this thread. Thread

communicates with rest of the test-bench via PLI (see 2.8.1), and controls Clock agent, Memory bus agent and

Compliance test agent (CAN agent). When test sequence ends, it signals this back to Test controller agent that

passes the result of test back to test_done and test_success.

2. Feature tests - Test controller agent requests Feature test agent to start running the test. Feature test agent uses

all the other agents connected to DUT, and executes test sequence. After the test sequence, feature test agent

gives control back to Test controller agent that passes the result back to test_done and test_success.

3. Reference tests - Test controller agent requests running the test from Reference test agent. Reference test agent

applies reference test sequences to DUT via Compliance test agents driver. When Reference test agent sequence

ends, it gives control back to Test controller agent that passes the result back to test_done and test_success.

2.4 Communication mechanisms

Agents in VIP communicate together via communication channel implemented in �tb_communication_pkg.vhd�. Com-

munication channel provides message passing mechanism (�send� function). Each agent implements single �receiver� of

messages (�receive_start� and �receive_�nish� functions). Messages can be sent by any process at any time, however

only one message can be sent at a time (it is not possible to send multiple messages at the same time), over single chan-

nel. Destination agent is selected with each message being sent. Communication is synchronous (�send� function returns

after the message has been received by destination agent). CTU CAN FD VIP uses single channel (�default_channel�

signal) for communication.

2.5 Report mechanisms

Test-bench contains package (tb_report_pkg.vhd) that is used to report, and execute checks in the implemented tests.

Any call to �error_m�, �check(false,...)� or �check_false(true,...)� will make any test fail (test_success will stay 0 when
test_done goes high at the end of test).

VIP contains own log verbosity mechanism. There are 4 verbosity levels:

5

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

verbosity_debug All logs are shown, including �debug_m� calls.

verbosity_info Only �info_m�, �warning_m�, and �error_m� calls are logged. Calls to �check(true,...)�/�check_false(false,...)�

are also logged.

verbosity_warning Only �warning_m� and �error_m� calls are logged.

verbosity_error Only �error_m� calls are logged.

With any verbosity level, calls to �check(false,...)�/�check_false(true,...)� are always logged, since this means a test fail

condition occured. Verbosity level used by VIP can be con�gured by a call to �set_log_verbosity� function.

2.6 Random number generation

VIP contains pseudo-random number generator in �tb_random_pkg.vhd�. VIP initializes random number generator in

any test based on seed generic of VIP. The Vunit framework used to run CTU CAN FD development generates random

value for seed generic. Randomization is applied in majority of feature tests, and compliance tests. CAN frame �elds

which have prede�ned value in ISO16845-1 2016 for each test, are not randomized (to meet conditions of ISO 16845-1

2016).

2.7 Agents

2.7.1 Clock agent

Clock agent generates clk_sys clock. Period, jitter and duty cycle of generated clock can be con�gured. Clock agent

provides option to wait for one clock cycle. Clock agent is used by all test types. The clocks generated by clock agent

are used to clock the DUT.

2.7.2 Reset agent

Reset agent generates DUTs reset (res_n). DUT is reset in beginning of each test. Polarity of a reset can be con�gured.

2.7.3 Memory bus agent

Memory bus agent generates memory transactions compatible with DUTs RAM-like interface (see [1]). An example of

transfers on this interface is shown in Figure 2.2. This interface is compatible with Avalon interface. 8, 16 and 32 bit

accesses are supported. Read and Write accesses are supported. Read accesses are always blocking (see access functions

in �mem_bus_agent_pkg.vhd�). Write accesses can be blocking or non-blocking. Memory bus agent supports burst

accesses. Memory bus agent contains FIFO where accesses can be posted, and then executed in bulk.

2.7.4 CAN agent

CAN agent is used by two test types: compliance tests and reference tests. CAN agent drives DUTs can_rx and

monitors/checks whether DUTs can_tx signals are as expected. Sequences which are driven/monitored by CAN agent,

are produced by either of:

� Compliance test library

6

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

 Write access Read access Read after Write Write after Read

clk_sys

scs

swr

srd

sbe BE 0 BE 1 BE 2 BE 0 BE 1 BE 2 BE 1 BE 2 BE 1 BE 2

address 0000 0004 0008 0000 0004 0008 0004 0008 0004 0008

data_in Data 0 Data 4 Data 8 Data 4 Data 8

data_out Data 0 Data 4 Data 8 Data 8 Data 4

Figure 2.2: Memory bus agent transactions

� Reference test agent (the data are de�ned by reference data sets).

CAN agent consists of two parts:

Driver Drives sequences to can_rx of DUT.

Monitor Monitors sequences on can_tx of DUT.

Driver and monitor each contain FIFO which hold items to be driven and monitored. If there are multiple items in FIFO,

they are driven/monitored one after another, therefore creating sequence of bits (similar to UVM sequence, and sequence

item). Such sequence represents CAN frames. Each driven item consists of:

value Logic value which is put on can_rx when this item is being driven.

time Duration for which this item is driven.

Each monitored item consist of:

value Logic value which is checked on can_tx during monitoring of this item.

time Duration for which this item is monitored. Value should be multiple of sample_rate.

sample_rate Sampling rate used to monitor this item. Monitored item is not checked permanently, but in discrete

moments separated by sampling rate. If can_tx does not match value of currently monitored item in the moment

of sampling, mismatch counter is incremented and test fails.

ISO 11898-1 2015 model in compliance test library translates CAN frames to sequences of driver and monitor items. To

send CAN frame to DUT, compliance test library translates bits of the frame into sequence of driver items, and drives

them via CAN agents driver. Similarly, to check transmitted frame, compliance test library translates the expected CAN

frame to sequence of items monitored by CAN agents monitor. Typically, compliance test library translates single bit on

CAN bus to single driven/monitored item. Sampling rate of monitored items is equal to single time quanta (since ISO

16845 de�nes that time quanta should be used as granularity of checking can_tx value).

Driver and monitor typically operate simultaneously. An example scenario is:

� Transmit frame to DUT, and check that DUT issues dominant acknowledge at correct time.

7

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

If both driver and monitor contain the same CAN frame (monitored frame was converted to all Recessive bits with ACK

bit dominant), then the example above is achieved. Alternatively, monitor can be delayed from driver by con�gurable

time. This feature allows compensating input delay of DUT.

Typical operation of CAN agent is following:

1. Flush driver and monitor FIFOs (to be sure there are no remaining items).

2. Insert sequences to driver and monitor FIFOs.

3. Con�gure monitor delay.

4. Start driver and monitor.

5. Wait until driver and monitor are �nished (during this time, communication channel is blocked).

6. Issue �check result� command to monitor. This will print error into simulator log, if any mismatches occured in

monitored sequence (causing test to fail).

An example of CAN agent operation in which Driver transmits a frame to DUT and monitor checks that DUT issues

ACK in correct moment is shown in Figure 2.3.

Figure 2.3: CAN agent example

2.7.5 Timestamp agent

Timestamp agent drivers timestamp signal of VIP. Timestamp agent generates up-counting sequence of values, syn-

chronous to clk_sys. Counting step, and number of cycles needed to advance to next value (prescaler) can be con�gured.

Timestamp agent is used by feature tests which verify timestamping of RX frames or time triggered transmission.

2.7.6 Interrupt agent

Interrupt agent monitors int input of VIP. It is used to check whether DUTs interrupt is asserted or de-asserted. Polarity

of interrupt is con�gurable.

2.7.7 Test probe agent

Test probe agent watches DUTs test_probe output. This agent uses test_probe to observe CTU CAN FDs signals

indicating sample point and start of bit. Test-probe agent provides functions for synchronizing with DUTs start of bit or

sample point. Test probe agent is used by feature tests. Test probe agent also drives scan_enable input of DUT.

8

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

2.7.8 Feature test agent

Feature test agent is active only in feature tests. When testbench invokes features test agent, the agent calls test speci�c

sequence (�*_ftest.vhd� �les contain test sequences), based on name of the test (test_name generic). Feature test

agent has following capabilities:

� Contains another instance of CTU CAN FD. This instance is re�ered to as Test node, and DUT communicates

with this node as part of feature tests.

� Signal delayers allowing to con�gure arbitrary can_tx -> can_rx delay for each node (DUT and Test Node).

� Ability to force bus level (value received by both nodes on CAN bus).

� Ability to force can_rx of single node (either DUT or Test Node).

� Ability to check value of can_tx of each node.

These capabilities are used by feature test sequence to verify functionality of DUT. Feature tests use higher level API

(higher than direct register access), to access functionality of DUT (see �feature_test_agent_pkg.vhd�).

2.7.9 Reference test agent

Reference test agent is used by reference tests. It executes test sequence from dedicated reference data set (refer-

ence_data_set_*_pkg.vhd). Each reference data set contains 1000 frames which were transmitted by a reference CAN

implementation and recorded.

2.7.10 Functional coverage agent

Functional coverage agent contains Functional Cover points in PSL language. Functional coverage agent measures

functional coverage of the test-bench. Functional coverage agent peeks into the design via VHDLs external names.

2.8 Test types

2.8.1 Compliance tests

Functional diagram of the test-bench during compliance tests is shown in Figure 2.4. Compliance tests execute all tests

from ISO 16845-1 2016. Therefere, compliance tests provide claims of CTU CAN FD compliance towards ISO 11898-1

2015. CAN bus bit rate used by these tests is con�gured via VIPs generics. Several compliance tests have limitations

with regards to allowed bit rate. To see these limitations, re�er to test list �les in �test/tlf_compliance_*.yml�). These

limitations are given by architecture of CTU CAN FD compliance testing solution. It is intetion to remove these limitations

in the next development of CTU CAN FD. Several tests override the default bit rate to meet conditions of the test given

by ISO11898-1 2015 (e.g. test 7.6.23 calculates new bit rate from con�gured one, since test requires it to use certain bit

rate ratios).

When a compliance test is started, testbench gives control to compliance test library via PLI interface. Compliance test

library forks a thread where the test runs. Therefore, there are two contexts in compliance tests:

� Simulator context - Simulation is executed in this context, events are scheduled, and PLI callbacks are executed.

� Test context - Test sequence from compliance test library is executed in this context.

9

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

DUT

CTU CAN FD VIP

Memory
 bus
 Agent

Clock
Agent

Reset
Agent

Compliance
 test Agent
(CAN Agent)

 Test
controller
 agent

Compliance test library

Interrupt
 Agent

Reset

System
 clock

Memory
 bus

Interrupt

Test-bench top

CAN bus

 Vunit
manager

 VIP
control

Timestamp
 Agent

Timestamp

 PLI
Interface

Commands
 to other
 agents

ISO 11898
 cycle
 accurate
 model

 ISO 16845
Test sequences

Figure 2.4: Compliance test

Test sequence running in test context communicates with the simulation via shared memory interface. The shared memory

interface guarantees that PLI handles will only be accessed from simulator context. Thus, the PLI handles will not be

corrupted.

Compliance test library contains model of ISO11898-1 2015. The model is a golden reference used to generate test

sequences that are executed by CAN agent inside digital simulator. Reference model has following features:

� Full support of ISO 11898-1 2015 (all three variants: CAN FD enabled, CAN FD tolerant, Classical CAN)

� Cycle accurate representation of CAN frame.

� Can lenght / shorten bits to verify DUTs synchronization.

� Error insertion (all error types and positions can be modelled) and glitch insertion.

For more detailed architecture of compliance test library, re�er to [3].

PLI Interface

As PLI interface, VIP supports VHPI interface (IEEE 1076 standardized). There are two variants of VHPI: One for NVC,

and one for VCS. PLI interface consists of signals that are used to communicate between testbench and compliance

library. Table 2.2 lists these signals. Compliance test library, acts as master on this interface. It pushes transactions to a

shared memory location (inside Compliance test library), and simulator side of this interface �picks-up� these request with

VPI/VHPI callback on pli_clk . Simulator then drives them to PLI signals in VIP. Test controller agent then interprets

these signals, and sends commands to target agent via standard communication channel. This approach guarantees

that internal structures of digital simulator are modi�ed only from simulator context. PLI interface provides means for

accessing functionality of agents within TB. Compliance library can therefore control clock/reset generation, transactions

to DUT, CAN agent, etc.

10

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

Signal Description
pli_control_req TB is requesting run of compliance test from compliance library. Set by

VIP in early in compliance test run.
pli_control_ack Compliance test library acknowledge for pli_control_req.
pli_req Transaction request from compliance library
pli_ack Transaction acknowledge to compliance library.
pli_cmd Type of command/transaction being sent.
pli_dest Transaction destination agent.
pli_data_in Transaction data input.
pli_data_in_2 Transaction data input 2.
pli_str_buf_in Transaction string bu�er input.
pli_data_out Transaction data output.
pli_clk PLI clock.

Table 2.2: PLI interface signals

2.8.2 Reference tests

Reference tests use CAN agent to apply a bit-sequent to DUTs can_rx. This sequence was recorded from reference

CAN controller implementation upon transmission of random frame. After this sequence is applied, test reads received

CAN frame from DUT, and checks it matches CAN frame which was supposed to be received. This approach provides

�black-box� like testing functionality. Reference tests contain 10 data sets, each with 1000 pre-recorded CAN frames.

Data set is chosen by �test_name� generic of VIP. Each frame from data-set is applied by following sequence:

1. Store bit sequence from data set to CAN agents driver.

2. Start CAN agent driver.

3. Wait till driver �nishes.

4. Read CAN frame received by DUT and compare it with reference frame from data-set. This frame corresponds to

bit sequence from point 1.

11

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

2.8.3 Feature tests

Feature tests verify various �features� of CTU CAN FD as: Interrupts, register map, special modes, TX/RX bu�ers, etc.

These features are usually not directly related to ISO11898-1 2015, and they are speci�c to CTU CAN FD. Functional

diagram of TB during feature tests is shown in 2.5.

In feature tests, DUT communicates on CAN bus with another instance of CTU CAN FD located inside Feature test

agent (Test node). This setup allows invoking various situations in DUT. An example of such test sequence is following:

� Test reads size of DUTs RX bu�er.

� Test invokes transmission of CAN frames by Test Node. Amount of frames transmitted is selected to achieve

over�ow of RX bu�er in DUT.

� During transmission of frames, test monitors that RX bu�er over�ow occurs upon reception of frame which should

�ll RX bu�er memory (not before), therefore very�ng that over�ow occurs properly.

DUT

CTU CAN FD VIP

Memory
 bus
 Agent

Clock
Agent

Reset
Agent

Test controller agent

Interrupt
 Agent

Reset

System
 clock

Memory
 bus

Interrupt

Test-bench top

CAN bus

 Vunit
manager

 VIP
control

Timestamp
 Agent

Timestamp Feature test
 sequences

 Memory
 bus

 Test
Node

 Bus
forcing

Test control

CAN RX
 delay

Test

Commands to
 other agents

Figure 2.5: Feature test

12

Bibliography

[1] CTU CAN FD - System architecture

[2] CTU CAN FD - Datasheet

[3] ISO 16845 Compliance test library - https://github.com/Blebowski/iso-16845-compliance-tests

13

https://github.com/Blebowski/iso-16845-compliance-tests

	1 Introduction
	1.1 Test environment
	1.2 Supported simulators

	2 Testbench architecture
	2.1 Compiling the testbench
	2.2 VIP Interface
	2.3 Test execution flow
	2.4 Communication mechanisms
	2.5 Report mechanisms
	2.6 Random number generation
	2.7 Agents
	2.7.1 Clock agent
	2.7.2 Reset agent
	2.7.3 Memory bus agent
	2.7.4 CAN agent
	2.7.5 Timestamp agent
	2.7.6 Interrupt agent
	2.7.7 Test probe agent
	2.7.8 Feature test agent
	2.7.9 Reference test agent
	2.7.10 Functional coverage agent

	2.8 Test types
	2.8.1 Compliance tests
	PLI Interface

	2.8.2 Reference tests
	2.8.3 Feature tests

