CTU CAN FD
IP CORE

Testbench Architecture

LOGIC DESIGN SERVICES l.t.d.

February 1, 2026

2y CTU CAN FD IP Core - Testbench
JYES Version 0.3, Commit:5d16182, 2026-02-01

Document Author Date Change description
Version
0.1 Ondrej llle 04-2021 Initial version
0.2 Ondre;j llle 03-2025 Replace GHDL with NVC
03 Ondrej llle 06-2025 Proof-read, add compilation guide. Update figures and add

“Functional coverage agent”. Remove “integrated” VIP mode as
experimental.

Contents

1 Introduction 1
1.1 Test environment e
1.2 Supported simulators L 2
2 Testbench architecture 3
2.1 Compiling the testbench 3
22 VIP Interface 4
2.3 Testexecution flow 5
2.4 Communication mechanisms 5
25 Report mechanisms 5
2.6 Random number generation 6
2.7 AgeNts . . . L e 6
2.7.1 Clock agent 6
272 Resetagent 6
2.7.3 Memory bus agent L 6
274 CANagent. e 6
275 Timestamp agent e e 8
2.7.6 Interrupt agent L 8
2.7.7 Test probe agent 8
2.7.8 Featuretestagent 9
2.7.9 Referencetestagent. 9
2.7.10 Functional coverage agent L 9
2.8 Test types 9
2.8.1 Compliance tests 9
PLI Interface 10
2.82 Reference tests 11
2.83 Featuretests. 12

2y CTU CAN FD IP Core - Testbench 1. INTRODUCTION
[YES Version 0.3, Commit:5d16182, 2026-02-01

1. Introduction

This document describes test-bench of CTU CAN FD. It provides guide to integrate main CTU CAN FD test-bench
into other (e.g. SoC level) test-bench, and it explains types of tests available. CTU CAN FD contains following tests /
test-benches:

1. Main test-bench with following types of tests:

e Compliance tests - Verify compliance of CTU CAN FD to 1S011868-1 2015. Contains all tests from ISO
16845-1 2016. To run these tests, you need Compliance test library compiled and linked to simulation via
PLI. This library is a submodule of CTU CAN FD repository.

e Feature tests - Verify features of CTU CAN FD thah are not directly related to compliance with 1S011898-1
2015 (e.g. TX/RX buffers, Interrupts, special modes, frame filtering, etc.).

e Reference tests - Each test applies stimulus recorded from reference implementation of CAN protocol, checks
that CTU CAN FD can receive such sequence, and accepts frame correctly (black-box testing of cooperability).

2. RX buffer unit test - RX buffer has its own block-level test-bench. It is used to verify corner-cases of RX Buffer
FIFO.

This document focuses on main CTU CAN FD test-bench, and further reffers to it only as test-bench. It has following
features:

e Testbench is written in VHDL, compliant with VHDL 2008.

e Reference model of CAN bus communication that is used in compliance tests, is written in C++ 17. Reference
model is part of Compliance test library. Compliance library is comiled as shared object library (.so0), and linked to the
simulation. Test-bench communicates with Compliance library via VPI interface (GHDL specific) or VHPI interface
(IEEE 1076 standard). There is a separate library for each supported simulator. For compiling Compliance test
library, reffer to documentation in commercial delivery of Compliance library. Compilation is required for configuring
the path of CTU CAN FD VIP inside TB.

o All test functionality is abstracted to CTU CAN FD VIP.

1.1 Test environment

CTU CAN FD development uses following dependecies/tools:

e NVC - VHDL simulator

o GTKWave - waveform viewer.

2y CTU CAN FD IP Core - Testbench 1. INTRODUCTION
/ i:rf Version 0.3, Commit:5d16182, 2026-02-01

e Vunit - Unit test framework for VHDL.

Reffer to CTU CAN FD repository for ready-made docker image with all the dependencies installed.

1.2 Supported simulators

CTU CAN FD test-bench currently supports following simulators:

e NVC - Use at least version 1.16.2

e VCS - Use at least version V2023-12

2. Testbench architecture

Test-bench consists of following parts:

e CTU CAN FD VIP - contains all test code, test sequences, libraries, packages and agents. CTU CAN FD VIP
communicates with Compliance test library via a PLI interface.

e CTU CAN FD (DUT) - contains RTL.

Further in this document, CTU CAN FD VIP is reffered to only as VIP. CTU CAN FD design is reffered to as DUT.
Block diagram of CTU CAN FD test-bench is shown in Figure 2.1.

Test-bench top
Vunit VIP
manager |control _
CTU CAN FD VIP
_ Reset Reset
Agent Feature test
System Clock "1 Agent Compliance
clock A ¢ test
~ > en
CAN bus 9 Compliance library
3 > test Agent
DUT Mebmory Memory (CAN Agent) —
us
> bus ¢ controller
Agent Reference agent
Interrupt | Minterrupt test Agent
Agent ? Functional
Timestamp| [Timestamp Reference Coverage
< Agent data sets agent
Test probe | [Test probe
- Agent

Figure 2.1: Test-bench block diagram

2.1 Compiling the testbench

To compile the design and testbench execute following steps:

1. Compile all “.vhd" files from “rtl/sIf _rtl.yml" source list file into a “ctu_can_fd rtl" library.

2. Build the compliance test library. See [3] for details.

ﬂ)<
R

CTU CAN FD IP Core - Testbench
Version 0.3, Commit:5d16182, 2026-02-01

2. TESTBENCH ARCHITECTURE

3. Choose which “tb_top” wrapper you will be running. There are following wrappers available:

(a) Vunit - Choose if you will be running with VUnit

(b) Simple - If you will be running without Vunit

4. Compile all “.vhd” files from “test/slf tb dependencies <tb type>.yml" source list file to “ctu_can fd tb"

library. <tb_type> is either “vunit” or “simple” based on previous step.

5. Compile all files from “test/slf _tb _common.yml” to “ctu_can_fd_tb" library.

6. Compile all files from “test/slf tb_top <tb type>.yml” to “ctu_can_fd_tb" library.

2.2 VIP Interface

CTU CAN FD VIP is connected to DUT via interfaces shown in Table 2.1.

e Signals Connected to Description
Reset res_n Reset agent Control of asynchronous reset of DUT.
System clock | clk sys Clock agent Control of DUTs clock.
DFT support | scan_enable | Test port agent Control of DUTs scan mode.
CAN bus can_tx Compliance , Reference, Conrllect.ion to CAN bus (driving CAN RX and
can_rx Feature test agents monitoring CAN TX of DUT).
scs Chip select
swr Write enable
srd Read enable
Memory bus sbe Memory bus agent Byte enables
write data Write data to DUT.
read__data Read data from DUT.
address Memory/Register address.
Interrupt int Interrupt agent Monitoring of DUTs interrupt output.
Test probe test probe | Feature test agent Monitoring of I;)UT “test port” for various test
— features. Required only for feature tests.
Timestamp timestamp Timestamp agent Control of DUTs timestamp input.
test start Request to start test.
VIP control test done Test Controller agent Indication test has finished.
test:success Test result (1 - passed, O - failed).

Table 2.1: CTU CAN FD VIP interface signals

The behavior of VIP is following:

e VIP drives res_n of DUT.

e VIP generates clock signal for DUT (period is given by cfg sys clk period generic of VIP).

e VIP monitors can_tx pin of DUT and drives can_ rx pin of DUT (generates and monitors CAN frames).
e VIP generates memory transactions on its Memory bus to access registers of DUT.

VIP monitors int pin of DUT.

2y CTU CAN FD IP Core - Testbench 2. TESTBENCH ARCHITECTURE
/tf Version 0.3, Commit:5d16182, 2026-02-01

e VIP monitors test_probe pin of DUT.
e VIP drives scan_enable pin of DUT.

e VIP isintegrated in TB as on Figure 2.1 and simulation is controlled by Vunit manager (Seetb _top ctu_can_fd.vhd)

2.3 Test execution flow

Control of VIP by test-bench is following:
1. Testbench sets test start = '1'.
2. Testbench waits until test done = 1.

3. Testbench checks test success. If test success = '1’, the test passed, otherwise test failed.

All tests follow basic test sequence: test start = 1" is interpreted by Test controller agent. Test controller agent
invokes different agents based on type of test:

1. Compliance tests - Control over TB is handed over PLI to Compliance test library (shared object library linked to
simulation). Compliance test library forks its own test thread, and executes test sequence in this thread. Thread
communicates with rest of the test-bench via PLI (see 2.8.1), and controls Clock agent, Memory bus agent and
Compliance test agent (CAN agent). When test sequence ends, it signals this back to Test controller agent that
passes the result of test back to test done and test success.

2. Feature tests - Test controller agent requests Feature test agent to start running the test. Feature test agent uses
all the other agents connected to DUT, and executes test sequence. After the test sequence, feature test agent
gives control back to Test controller agent that passes the result back to test done and test success.

3. Reference tests - Test controller agent requests running the test from Reference test agent. Reference test agent
applies reference test sequences to DUT via Compliance test agents driver. When Reference test agent sequence
ends, it gives control back to Test controller agent that passes the result back to test done and test success.

2.4 Communication mechanisms

Agents in VIP communicate together via communication channel implemented in “tb _communication pkg.vhd". Com-
munication channel provides message passing mechanism (“‘send” function). Each agent implements single “receiver” of
messages ("receive start” and “receive finish” functions). Messages can be sent by any process at any time, however
only one message can be sent at a time (it is not possible to send multiple messages at the same time), over single chan-
nel. Destination agent is selected with each message being sent. Communication is synchronous (“send” function returns
after the message has been received by destination agent). CTU CAN FD VIP uses single channel (“default channel’
signal) for communication.

2.5 Report mechanisms

Test-bench contains package (tb_report pkg.vhd) that is used to report, and execute checks in the implemented tests.
Any call to “error_m", “check(false,...)" or “check_false(true,...)" will make any test fail (test_ success will stay 0 when
test _done goes high at the end of test).

VIP contains own log verbosity mechanism. There are 4 verbosity levels:

5

st:(gg CTU CAN FD IP Core - Testbench 2. TESTBENCH ARCHITECTURE
/tf Version 0.3, Commit:5d16182, 2026-02-01

verbosity _debug All logs are shown, including “debug_m" calls.

verbosity _info Only “info_m", “warning_m", and “error_m" calls are logged. Calls to “check(true,...)"/"check _false(false,...)"
are also logged.

verbosity warning Only “warning_m" and “error_m" calls are logged.

verbosity error Only “error_m" calls are logged.

With any verbosity level, calls to “check(false,...)"/"check false(true,...)" are always logged, since this means a test fail
condition occured. Verbosity level used by VIP can be configured by a call to “set log verbosity” function.

2.6 Random number generation

VIP contains pseudo-random number generator in “tb_random_pkg.vhd”. VIP initializes random number generator in
any test based on seed generic of VIP. The Vunit framework used to run CTU CAN FD development generates random
value for seed generic. Randomization is applied in majority of feature tests, and compliance tests. CAN frame fields
which have predefined value in 1S016845-1 2016 for each test, are not randomized (to meet conditions of ISO 16845-1
2016).

2.7 Agents

2.7.1 Clock agent

Clock agent generates clk__sys clock. Period, jitter and duty cycle of generated clock can be configured. Clock agent
provides option to wait for one clock cycle. Clock agent is used by all test types. The clocks generated by clock agent
are used to clock the DUT.

2.7.2 Reset agent

Reset agent generates DUTs reset (res_n). DUT is reset in beginning of each test. Polarity of a reset can be configured.

2.7.3 Memory bus agent

Memory bus agent generates memory transactions compatible with DUTs RAM-like interface (see [1]). An example of
transfers on this interface is shown in Figure 2.2. This interface is compatible with Avalon interface. 8, 16 and 32 bit
accesses are supported. Read and Write accesses are supported. Read accesses are always blocking (see access functions
in “mem_bus agent pkg.vhd”). Write accesses can be blocking or non-blocking. Memory bus agent supports burst
accesses. Memory bus agent contains FIFO where accesses can be posted, and then executed in bulk.

2.7.4 CAN agent

CAN agent is used by two test types: compliance tests and reference tests. CAN agent drives DUTs can_rx and
monitors/checks whether DUTs can_ tx signals are as expected. Sequences which are driven/monitored by CAN agent,
are produced by either of:

o Compliance test library

st.%g CTU CAN FD IP Core - Testbench 2. TESTBENCH ARCHITECTURE
/rf Version 0.3, Commit:5d16182, 2026-02-01

rranipiniglinipiniginigingiginiginiginiginl
ss [/ /[
srd [\ [\ [\
sbe 77///XBE 0)\BE 1XBE 2k ~XBE OXBE 1XBE 2¥//////////XBE 1\BE 2/ XBE 1YBE 2X//
address 7///////{00000004)0008) 7/X0000(0004)0008X”////////X0004)0008%"/ 7//0004)0008) 7,
data_in 7/////\pata o)pata 4)pata 8/ 7/ pataaX”/ %D
data_out 7//\ata o) Data 4)Data 8} %O 7 Noaaa)”

Write access Read access Read after Write Write after Read

Figure 2.2: Memory bus agent transactions

e Reference test agent (the data are defined by reference data sets).
CAN agent consists of two parts:

Driver Drives sequences to can_rx of DUT.

Monitor Monitors sequences on can_tx of DUT.

Driver and monitor each contain FIFO which hold items to be driven and monitored. If there are multiple items in FIFO,
they are driven/monitored one after another, therefore creating sequence of bits (similar to UVM sequence, and sequence
item). Such sequence represents CAN frames. Each driven item consists of:

value Logic value which is put on can_ rx when this item is being driven.

time Duration for which this item is driven.
Each monitored item consist of:

value Logic value which is checked on can_ tx during monitoring of this item.
time Duration for which this item is monitored. Value should be multiple of sample rate.

sample rate Sampling rate used to monitor this item. Monitored item is not checked permanently, but in discrete
moments separated by sampling rate. If can_ tx does not match value of currently monitored item in the moment
of sampling, mismatch counter is incremented and test fails.

ISO 11898-1 2015 model in compliance test library translates CAN frames to sequences of driver and monitor items. To
send CAN frame to DUT, compliance test library translates bits of the frame into sequence of driver items, and drives
them via CAN agents driver. Similarly, to check transmitted frame, compliance test library translates the expected CAN
frame to sequence of items monitored by CAN agents monitor. Typically, compliance test library translates single bit on
CAN bus to single driven/monitored item. Sampling rate of monitored items is equal to single time quanta (since I1SO
16845 defines that time quanta should be used as granularity of checking can _tx value).

Driver and monitor typically operate simultaneously. An example scenario is:
e Transmit frame to DUT, and check that DUT issues dominant acknowledge at correct time.

7

2y CTU CAN FD IP Core - Testbench 2. TESTBENCH ARCHITECTURE
Y& Version 0.3, Commit:5d16182, 2026-02-01

If both driver and monitor contain the same CAN frame (monitored frame was converted to all Recessive bits with ACK
bit dominant), then the example above is achieved. Alternatively, monitor can be delayed from driver by configurable
time. This feature allows compensating input delay of DUT.

Typical operation of CAN agent is following:

1. Flush driver and monitor FIFOs (to be sure there are no remaining items).

2. Insert sequences to driver and monitor FIFOs.

3. Configure monitor delay.

4. Start driver and monitor.

5. Wait until driver and monitor are finished (during this time, communication channel is blocked).

6. Issue “check result” command to monitor. This will print error into simulator log, if any mismatches occured in
monitored sequence (causing test to fail).

An example of CAN agent operation in which Driver transmits a frame to DUT and monitor checks that DUT issues
ACK in correct moment is shown in Figure 2.3.

Time
DuT
can_tx=1
can_rx=1
curr_state=s_pc data
Driver
driver wp=141
driver rp=104
driving in progress=true
value=1
drive time=1550 ns
Monitor
monitor state=mon_running
value=1
monitor time=1550 ns
sample rate=56 ns

monitor sample=0

Figure 2.3: CAN agent example

2.7.5 Timestamp agent

Timestamp agent drivers timestamp signal of VIP. Timestamp agent generates up-counting sequence of values, syn-
chronous to clk_sys. Counting step, and number of cycles needed to advance to next value (prescaler) can be configured.
Timestamp agent is used by feature tests which verify timestamping of RX frames or time triggered transmission.
2.7.6 Interrupt agent

Interrupt agent monitors int input of VIP. It is used to check whether DUTs interrupt is asserted or de-asserted. Polarity
of interrupt is configurable.

2.7.7 Test probe agent

Test probe agent watches DUTs test probe output. This agent uses test probe to observe CTU CAN FDs signals
indicating sample point and start of bit. Test-probe agent provides functions for synchronizing with DUTs start of bit or
sample point. Test probe agent is used by feature tests. Test probe agent also drives scan_ enable input of DUT.

8

2y CTU CAN FD IP Core - Testbench 2. TESTBENCH ARCHITECTURE
/tf Version 0.3, Commit:5d16182, 2026-02-01

2.7.8 Feature test agent

Feature test agent is active only in feature tests. When testbench invokes features test agent, the agent calls test specific
sequence (“*_ftest.vhd" files contain test sequences), based on name of the test (test name generic). Feature test
agent has following capabilities:

e Contains another instance of CTU CAN FD. This instance is reffered to as Test node, and DUT communicates
with this node as part of feature tests.

o Signal delayers allowing to configure arbitrary can_ tx -> can_rx delay for each node (DUT and Test Node).
e Ability to force bus level (value received by both nodes on CAN bus).
e Ability to force can_ rx of single node (either DUT or Test Node).

e Ability to check value of can_tx of each node.

These capabilities are used by feature test sequence to verify functionality of DUT. Feature tests use higher level API
(higher than direct register access), to access functionality of DUT (see “feature test agent pkg.vhd").

2.7.9 Reference test agent

Reference test agent is used by reference tests. It executes test sequence from dedicated reference data set (refer-
ence data_set * pkg.vhd). Each reference data set contains 1000 frames which were transmitted by a reference CAN
implementation and recorded.

2.7.10 Functional coverage agent

Functional coverage agent contains Functional Cover points in PSL language. Functional coverage agent measures
functional coverage of the test-bench. Functional coverage agent peeks into the design via VHDLs external names.

2.8 Test types

2.8.1 Compliance tests

Functional diagram of the test-bench during compliance tests is shown in Figure 2.4. Compliance tests execute all tests
from 1SO 16845-1 2016. Therefere, compliance tests provide claims of CTU CAN FD compliance towards ISO 11898-1
2015. CAN bus bit rate used by these tests is configured via VIPs generics. Several compliance tests have limitations
with regards to allowed bit rate. To see these limitations, reffer to test list files in “test/tlf compliance *.yml"). These
limitations are given by architecture of CTU CAN FD compliance testing solution. It is intetion to remove these limitations
in the next development of CTU CAN FD. Several tests override the default bit rate to meet conditions of the test given
by 1SO11898-1 2015 (e.g. test 7.6.23 calculates new bit rate from configured one, since test requires it to use certain bit
rate ratios).

When a compliance test is started, testbench gives control to compliance test library via PLI interface. Compliance test
library forks a thread where the test runs. Therefore, there are two contexts in compliance tests:

e Simulator context - Simulation is executed in this context, events are scheduled, and PLI callbacks are executed.

e Test context - Test sequence from compliance test library is executed in this context.

9

qi.ag CTU CAN FD IP Core - Testbench 2. TESTBENCH ARCHITECTURE
[XFS Version 0.3, Commit:5d16182, 2026-02-01

Test-bench top
VIP
Vunit control
et < CTU CAN FD VIP
Reset Reset Ctomrphands
- Agent 0 other Test
agents controller
System Clock < agent
| clock
-~ Agent . y
CAN bus Compliance pL|
< > test Agent Interface
DUT (CAN Agent)
Memory | | Memory
< bus bus Compliance test library
Agent
— 1ISO 11898
Interrupt| Minterrupt — cycle
Agent —_— accurate
Timestamp| [Timestamp ISO 16845 model
Agent Test sequences

Figure 2.4: Compliance test

Test sequence running in test context communicates with the simulation via shared memory interface. The shared memory
interface guarantees that PLI handles will only be accessed from simulator context. Thus, the PLI handles will not be
corrupted.

Compliance test library contains model of 1S011898-1 2015. The model is a golden reference used to generate test
sequences that are executed by CAN agent inside digital simulator. Reference model has following features:

e Full support of 1ISO 11898-1 2015 (all three variants: CAN FD enabled, CAN FD tolerant, Classical CAN)
e Cycle accurate representation of CAN frame.
e Can lenght / shorten bits to verify DUTs synchronization.

e Error insertion (all error types and positions can be modelled) and glitch insertion.

For more detailed architecture of compliance test library, reffer to [3].

PLI Interface

As PLI interface, VIP supports VHPI interface (IEEE 1076 standardized). There are two variants of VHPI: One for NVC,
and one for VCS. PLI interface consists of signals that are used to communicate between testbench and compliance
library. Table 2.2 lists these signals. Compliance test library, acts as master on this interface. It pushes transactions to a
shared memory location (inside Compliance test library), and simulator side of this interface “picks-up” these request with
VPI/VHPI callback on pli clk. Simulator then drives them to PLI signals in VIP. Test controller agent then interprets
these signals, and sends commands to target agent via standard communication channel. This approach guarantees
that internal structures of digital simulator are modified only from simulator context. PLI interface provides means for
accessing functionality of agents within TB. Compliance library can therefore control clock/reset generation, transactions
to DUT, CAN agent, etc.

10

CTU CAN FD IP Core - Testbench

Version 0.3, Commit:5d16182, 2026-02-01

Signal

Description

pli_control req

TB is requesting run of compliance test from compliance library. Set by
VIP in early in compliance test run.

pli_ control _ack

Compliance test library acknowledge for pli control req.

pli req

Transaction request from compliance library

2. TESTBENCH ARCHITECTURE

pli_ ack Transaction acknowledge to compliance library.
pli_cmd Type of command/transaction being sent.
pli_ dest Transaction destination agent.

pli_data_in Transaction data input.

Transaction data input 2.
Transaction string buffer input.
Transaction data output.

PLI clock.

pli_data in 2
pli_str _buf in
pli data out

pli clk

Table 2.2: PLI interface signals

2.8.2 Reference tests

Reference tests use CAN agent to apply a bit-sequent to DUTs can_rx. This sequence was recorded from reference
CAN controller implementation upon transmission of random frame. After this sequence is applied, test reads received
CAN frame from DUT, and checks it matches CAN frame which was supposed to be received. This approach provides
“black-box" like testing functionality. Reference tests contain 10 data sets, each with 1000 pre-recorded CAN frames.
Data set is chosen by “test _name” generic of VIP. Each frame from data-set is applied by following sequence:

1. Store bit sequence from data set to CAN agents driver.
2. Start CAN agent driver.
3. Wait till driver finishes.

4. Read CAN frame received by DUT and compare it with reference frame from data-set. This frame corresponds to
bit sequence from point 1.

11

qi.ag CTU CAN FD IP Core - Testbench 2. TESTBENCH ARCHITECTURE
[XFS Version 0.3, Commit:5d16182, 2026-02-01

2.8.3 Feature tests

Feature tests verify various “features” of CTU CAN FD as: Interrupts, register map, special modes, TX/RX buffers, etc.
These features are usually not directly related to 1ISO11898-1 2015, and they are specific to CTU CAN FD. Functional
diagram of TB during feature tests is shown in 2.5.

In feature tests, DUT communicates on CAN bus with another instance of CTU CAN FD located inside Feature test
agent (Test node). This setup allows invoking various situations in DUT. An example of such test sequence is following:

e Test reads size of DUTs RX buffer.

e Test invokes transmission of CAN frames by Test Node. Amount of frames transmitted is selected to achieve
overflow of RX buffer in DUT.

e During transmission of frames, test monitors that RX buffer overflow occurs upon reception of frame which should
fill RX buffer memory (not before), therefore veryfing that overflow occurs properly.

Test-bench top
VIP

Vunit control CTU CAN FD VIP

manager [>

‘ Test controller agent ‘

Reset Reset
< Agent Test control
System
clock Clock
< Agent CAN RX Bus
AN i
<C bus »| delay forcing
DUT Memor
Memory | [Memory| " Ere Y i
< PUs bus Test Test
Agent Node ——
Interrupt Interrupt —
Agent Cohmmands to —
) other agents | Feature test
Timestamp| [Timestamp é seeaqt:;c:

Agent

Figure 2.5: Feature test

12

Bibliography

[1] CTU CAN FD - System architecture
[2] CTU CAN FD - Datasheet

[3] 1SO 16845 Compliance test library - https://github.com/Blebowski/iso-16845-compliance-tests

13

https://github.com/Blebowski/iso-16845-compliance-tests

	1 Introduction
	1.1 Test environment
	1.2 Supported simulators

	2 Testbench architecture
	2.1 Compiling the testbench
	2.2 VIP Interface
	2.3 Test execution flow
	2.4 Communication mechanisms
	2.5 Report mechanisms
	2.6 Random number generation
	2.7 Agents
	2.7.1 Clock agent
	2.7.2 Reset agent
	2.7.3 Memory bus agent
	2.7.4 CAN agent
	2.7.5 Timestamp agent
	2.7.6 Interrupt agent
	2.7.7 Test probe agent
	2.7.8 Feature test agent
	2.7.9 Reference test agent
	2.7.10 Functional coverage agent

	2.8 Test types
	2.8.1 Compliance tests
	PLI Interface

	2.8.2 Reference tests
	2.8.3 Feature tests

