CTU CAN FD
IP CORE

Datasheet

LOGIC DESIGN SERVICES l.t.d.

February 1, 2026

ﬂ%@* CTU CAN FD IP Core - Datasheet
/ A2 Version 2.7.0, Commit:5d16182, 2026-02-01

Document Date Change description
Version
1.0 07-2015 Initial version describing release 1.0
2.0 09-2016 Added test framework description. Updated document to cover latest description of
CAN Core.
07-2018 Updated register map description, external references to generated maps. Updated
block diagrams. Updated test framework description. Updated Synthesis table.
2.1 10-2018 Added Linux driver description
12-2018 Added Register map block diagram after re-implementation of registers via Register
map generator.
12-2018 Added CRC Wrapper. Extended CRC description.
01-2019 Added TIMESTAMP _LOW, TIMESTAMP _HIGH registers.
03-2019 Re-worked Prescaler. Removed 0x3 in bits 23:20 of address.
2.2 26-09-2019 Split functional descripion and register map from original document.
21-10-2019 Clarify TXT buffer behaviour when node goes bus-off.
31-10-2019 Clarify Bus-off behaviour aftet Start-up. Clarify that frame must be inserted to TXT
Buffer before sending.
18-11-2019 Clarify behaviour of Transmitter delay measurement. Add notes on RX frame
timestamping. Extend SSP position to 255.
13-12-2019 Clarify that only TEC above 255 will cause node to go Bus off.
30-4-2020 Add SETTING[PEX] and Protocol exception support.
28-10-2020 Add frame filters examples, add TBFBO and FDRF bits in SETTINGS registers,
minor refactoring.
05-11-2020 Add general overview and TX frame type description.
4-2-2021 Change license
2.3 4-2-2021 Added MODE[ROM] - Restricted operation mode.
23-2-2021 Add TXTB_INFO and mention generic number of TXT buffers.
9-4-2021 Add RETR_CTR register.
26-4-2021 Add chapter about memory testability.
17-05-2021 Add STATUfS[STCNT] and STATUS[STRGS] bits.
26-05-2021 Reduce maximal number of bits on the fly during secondary sampling to 4.
29-05-2021 Add detailed description of disabling node by SETTINGS[ENA].
11-06-2021 Add MODE[RXBAM] and COMMANDI[RXRPMV] bits, describe RX buffer modes.
18-06-2021 Add MODE[TTTM] bit to enable time-triggered transmission.
2.4 28-08-2021 Move to new release of CTU CAN FD. Bump document version accordingly.
1-4-2022 Add MODE[TXBBM], MODE[SAM], STATUS[RXPE], STATUS[TXPE],
COMMAND [CTPXE] and COMMAND[CRPXE]. Add FRAME FORMAT _W bits
which allow flipping of CRC or Stuff count. Add section on parity mechanism testing.
- 27-6-2022 SW commands on TXT Buffers in MODE[TXBBM] are automatically applied to
“backup” TXT Buffers. Add reset buffer rams and active_timestamp _bits
configuration parameters.
5-7-2022 Add SETTINGS[PCHKE] bit to control enable / disable of parity checking.
2.5 9-12-2023 Move to new release of CTU CAN FD. Bump document version accordingly.
8-5-2024 Add note about TXBHCI interrupt behavior.

i2g CTU CAN FD IP Core - Datasheet
/rfg Version 2.7.0, Commit:5d16182, 2026-02-01
19-6-2024 Add LBPF bit to RX frame. Add MODE[ERFM]. Add FRAME FORMAT _WI[ERF],
FRAME _FORMAT _WI[ERF _*]. Add Error frame reception to RX buffer. Add
ERR_CAPT[ERR _ERP] bit. Add FRAME FORMAT _W[LBTBI] and
FRAME FORMAT _WI[IVLD].
2.6 19-6-2025 Move to new relase of CTU CAN FD.
15-9-2025 Fix code samples to readout RWCNT - 3 words.
17-12-2025 Clarify Frame filters behavior in case of logged error frames.
21-12-2025 Extend TRV _DELAY to 8 bits (max 255). Extend SSP position capacity to 511,
remove SSP saturation since it is un-needed now. Extend max bits in flight to 7.
2.7 04-1-2026 Move to new relase of CTU CAN FD.

i

Contents

Format 1
1 Introduction 2
1.1 General overview L L 2
1.2 Features e 2
1.3 License L 2
1.4 Source code access 3
1.5 Block diagram e 3
1.6 Implementation parameters L L L 4
1.7 Configuration parameters 4

2 Functional description 5
2.1 Clock 5
2.2 Reset 5
2.3 Memory organization 5
24 Timebase e 5
25 Operatingmodes 6
2.6 Initialization sequence L 7
2.7 De-initialization sequence L e 7
2.8 CAN bus configuration L 7
281 Bitrate 7

500 Kbit / 2 Mbit example 8

2.8.2 Transmitter delay L 8

2.8.3 Secondary sampling point 9

2.84 CANFD support 10

2.8.5 Protocol exception handling 10

2.8.6 Implementation type L 11

2.8.7 Minimum bit time / Maximal bitrate 11

2.9 CAN frame transmission 12
2.9.1 TXT buffer selection 12

ﬂ)<
R

2.10

211
212

2.13

2.14

CTU CAN FD IP Core - Datasheet CONTENTS
Version 2.7.0, Commit:5d16182, 2026-02-01

2.9.2 Time triggered transmission mode 13
2.9.3 Type of transmitted CAN frame 14
2.9.4 Retransmitt limitation 15
295 Abort 15
2.9.6 TXT buffer - Bus-off behavior 16
297 Samplecode 16
CAN frame reception 17
2.10.1 Framecount e 17
2.10.2 Error frame reception e 18
2.10.3 RX buffer memory e 18
2.10.4 RX bufferstatus e 19
2.10.5 Overrun . . . L L 19
2106 Flush 19
2.10.7 Inconsistency protection 19
2.10.8 Timestamping 20
2.10.9 Frame filtering L 20
Bit filter 21

Range filter 21
2.10.10Sample code 1 - Frame reception in automatic mode (32-bit access) 21
2.10.11Sample code 2 - Frame reception in manual mode (8-bit access) 22
2.10.12Sample code 3 - Bit filter configuration 23
Fault confinement L 23
Interrupts L. 24
2.12.1 Frame transmission and reception 24
2.12.2 Fault confinement 24
2.12.3 TXT buffers and RX buffer 25
2.12.4 Error and Overload frame 25
2,125 Other 25
Fault Tolerance e 26
2.13.1 Parity protection on RX buffer RAM 26
2.13.2 Parity protection on TXT Buffer RAMs 27
2.13.3 TXT Buffer Backup mode e 28
2.13.4 Parity protection testing 30
Special modes 31
2141 Loopback mode 31
2142 Self test mode 31
2.14.3 Acknowledge forbidden mode 32
2.14.4 Self acknowledge mode 32
2.145 Bus monitoring mode L 32

iv

sugg CTU CAN FD IP Core - Datasheet CONTENTS
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

2.14.6 Restricted operation mode 32
2147 Test mode L 32

2.15 Corrupting transmitted CAN frames 33
2151 Flipabitof CRCfield. 33
2.15.2 Flip a bit of Stuff count field 33
2.15.3 Replace DLC with arbitrary value 34

2.16 Other features 34
2.16.1 Error code capture 34
2.16.2 Arbitration lost capture L 34
2.16.3 Traffic counters L 34
2.16.4 Debug register 34
2.16.5 Memory testability 35

3 CAN FD Core memory map 36
3.1 Control registers 37
3.1.1 DEVICE ID 38
3.1.2 VERSION . . . e 38
3.1.3 MODE 39
3.1.4 SETTINGS . . e 40
315 STATUS . . o 41
316 COMMAND 42
3.1.7 INT _STAT . . 43
3.1.8 INT_ENA SET 44
3.1.9 INT_ENA _CLR . . . 45
3.1.10 INT_MASK SET 45
3.1.11 INT_MASK CLR . . . 46
3.1.12 BTR . . o e 46
3.1.13 BTR_FD . . o 47
3.1.14 EWL . . . o L 48
3.1.15 ERP . . o e 48
3.1.16 FAULT STATE e 48
3.1.17 REC . . o 49
3118 TEC . . . o 49
3.1.19 ERR_NORM 50
3.1.20 ERR_FD . . . 50
3.1.21 CTR_PRES . . . e 50
3.1.22 FILTER A MASK 51
3.1.23 FILTER A VAL 52
3.1.24 FILTER _B_MASK 52

3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10

CTU CAN FD IP Core - Datasheet CONTENTS

Version 2.7.0, Commit:5d16182, 2026-02-01
3.1.25 FILTER _B VAL 53
3.1.26 FILTER _C _MASK 54
3.1.27 FILTER _C VAL 54
3.1.28 FILTER_RAN LOW 55
3.1.29 FILTER_RAN _HIGH 56
3.1.30 FILTER_CONTROL e 56
3.1.31 FILTER _STATUS e 57
3.1.32 RX_MEM _INFO oo 58
3.1.33 RX_POINTERS 58
3.1.34 RX_STATUS 59
3.1.35 RX_SETTINGS 59
3.1.36 RX_DATA . . o 60
3.1.37 TX _STATUS . . 60
3.1.38 TX_COMMAND e 61
3.1.39 TXTB INFO o 62
3.1.40 TX _PRIORITY . . . o 63
3.1.41 ERR_CAPT . . . e 63
3.1.42 RETR_CTR 64
3.1.43 ALC . . 65
3144 TS INFO . . . o 65
3.1.45 TRV _DELAY 66
3146 SSP_CFG . . o oo 66
3147 RX_FR _CTR 67
3148 TX _FR_CTR 67
3.1.49 DEBUG_REGISTER 68
3150 YOLO REG . . . o o 69
3.1.51 TIMESTAMP LOW e 70
3.1.52 TIMESTAMP HIGH 70
TXT Buffer 1 72
TXT Buffer 2 73
TXT Buffer 3 74
TXT Buffer 4 75
TXT Buffer 5 76
TXT Buffer 6 77
TXT Buffer 7 78
TXT Buffer 8 79
Test registers L 80
3.10.1 TST _CONTROL 80
3102 TST_DEST . . oo 81
3.10.3 TST_WDATA 81
3.10.4 TST _RDATA . . 82

vi

sugg CTU CAN FD IP Core - Datasheet CONTENTS
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

4 CAN FD frame format 83
41 CAN FD Frame format 84
411 FRAME _FORMAT W e 84
412 IDENTIFIER_W . . . e 86
413 TIMESTAMP L W e 87
414 TIMESTAMP U W 87
415 DATA 1 4 W . . 88
416 DATA 5 8 W . . . e 88
417 DATA O 12 W . . oo 89
418 DATA 13 16 W 90
419 DATA 17 20 W 90
410 DATA 21 24 W ..o 91
4111 DATA 25 28 W . oo 92
4112 DATA 20 32 W 92
4113 DATA 33 36 W 93
4.1.14 DATA 37 40 W e 94
4115 DATA 41 44 W 94
4116 DATA 45 48 W 95
4117 DATA 49 52 W . . . 96
4118 DATA 53 56 W, 96
4119 DATA 57 60 W, 97
4120 DATA 61 64 W 98
4121 FRAME _TEST W 98

vii

Format

Throughout this datasheet following notation is kept:
e Common text is written with this font.

e Memory registers are described with capital letters:

— e.g. REGISTER to describe a register
— REGISTER [BIT _FIELD] to describe a bit field within a register.

e Explicit terms are written in apostrophe like so: “TX Failed".

Source code examples are written by this font

28 CTU CAN FD IP Core - Datasheet 1. INTRODUCTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

1. Introduction

This document provides functional description of CTU CAN FD, programmers model, and parameters of CTU CAN FD.
It is intended to be used as a reference for SW driver developers. Internal architecture of CTU CAN FD is described in

[1].

1.1 General overview

CTU CAN FD is a soft IP-core written in VHDL with no vendor-specific libraries needed. It implements CAN FD protocol
as specified by 1S011898-1.

1.2 Features

e Compliant with 1S011898-1 2015

e RX buffer FIFO with 32 - 4096 words (1-204 CAN FD frames with 64 byte of data)
e 2-8 TXT buffers (1 CAN FD frame in each TXT buffer)

¢ 32 bit slave memory interface (APB, AHB, RAM-like interface)

e Support of ISO and non-ISO CAN FD protocol

e Timestamping and Time triggered transmission

e Interrupts

e Loopback mode, Bus monitoring mode, ACK forbidden mode, Self-test mode, Restricted operation mode

1.3 License

RTL and testbench of CTU CAN FD IP core are published under following license:

Permission is hereby granted, free of charge, to any person obtaining a copy of this VHDL component
and associated documentation files (the "Component"), to use, copy, modify, merge, publish, distribute the
Component for educational, research, evaluation, self-interest purposes. Using the Component for commercial
purposes is forbidden unless previously agreed with Copyright holder.

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Component.

st.ag CTU CAN FD IP Core - Datasheet 1. INTRODUCTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

THE COMPONENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHTHOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE COMPONENT OR THE USE OR OTHER DEALINGS IN THE COMPONENT.

Linux driver and low level driver are published under GPL v 2.0:

This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY: without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have received a copy of the
GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

1.4 Source code access

CTU CAN FD source code is available in CTU FEE GitLab repository at:
https://gitlab.fel.cvut.cz/canbus/ctucanfd _ip core

1.5 Block diagram

INTERRUPT Interrupt ‘ I l ' ‘ A N F D
D manager
Bit
RX Filtered RX timi
buffer f iming
access RX :RX rame | Frame |, frame < » Prescaler
< buffer filters CAN
Memory | TXT x selected | Protocol RX o
registers Zté?‘:sr: frames= ™ X frame' core ¢ Data o < _
< > TXT Arbitrator X » Samp|er CAN—TZ
buffers |[H "
Data

Figure 1.1: CTU CAN FD block diagram

https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

28 CTU CAN FD IP Core - Datasheet 1. INTRODUCTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

1.6 Implementation parameters

Parameter name Value Units

Minimum nominal time quanta 1 -

Minimum data time quanta 1 -

Information processing time 2 Minimum time
quanta

Input delay (¢input) 2 System clock
periods (see 2.1)

Nominal bit rate prescaler range (BTR[BRP] register) 1-255

Data bit rate prescaler range (BTR_FD[BRP _FD] register) 1-255

Minimal nominal bit time length 8 Time quanta

Minimal data bit time length 5 Time quanta

Table 1.1: Implementation parameters

1.7 Configuration parameters

CTU CAN FD can be used with different options when implemented on ASIC or FPGA. These parameters are then
readable by SW. Related parameters are described in 1.2.

Parameter name Value Description
rx_buffer size 32 - 4096 Size of RX buffer (number of 32bit words it can store). SW can read
B B this value from RX_MEM _INFO[RX BUFF _SIZE].
sup filt A true/false Filter A is / is not present. If present, FILTER STATUS[SFA] = 1.
sup filt B true/false Filter B is / is not present. If present, FILTER STATUS[SFB] = 1.
sup filt C true/false Filter C is / is not present. If present, FILTER STATUS[SFC] = 1.
sup range true/false Range fitler is / is not present. If present, FILTER STATUS[SFR] = 1.
sup_ traffic_ctrs true/false Traffic counters are / are not present. If present, STATUS[STCNT] =
1.
txt buffer count | 2-8 Number of TXT buffers available. Can be read from TXTB_INFO
- h register.
sup _test registers | true/false Test registers for memory testability (Test Registers memory region)
are / are not present . If present, STATUS[STRCNT] = 1.
sup parity true/false Add parity bits to each word of TXT Buffer and RX buffer RAMs. If
- Parity protection is present, STATUS[SPRT] = 1.
reset_buffer _rams | true/false When true, TXT Buffer and RX buffer RAMs are resettable by HW
reset.
active timestamp bitsteger Number of active bits of CTU CAN FD timebase - 1.

Table 1.2: Configuration parameters

st:(gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

2. Functional description

2.1 Clock

CTU CAN FD operates with a single clock called System clock. Every other timing parameter is derived from System clock.
System clock frequency depends on the system that is integrating CTU CAN FD. System clock frequency corresponds
to frequency of clock signal of CTU CAN FD.

2.2 Reset

After power-up CTU CAN FD shall be reset either by HW reset (see [1]), or by Soft reset. Soft reset is executed by
writing MODE[RST] = 1. If HW reset was issued to CTU CAN FD , CTU CAN FD shall not be accessed for two clock
periods of System clock. For example, if CTU CAN FD System clock is 100 MHz, SW shall wait 20 ns after HW reset
was released. If Soft reset was issued, no waiting is required. Both, HW Reset and Soft reset have the same effect. By
applying any reset, CTU CAN FD is put to following state:

e CTU CAN FD is disabled, it is not communicating on CAN bus (bus-off state).
o All memory registers of CTU CAN FD have reset value.
e Memories in CTU CAN FD (TXT buffer and RX buffer) are not reset.

2.3 Memory organization

CTU CAN FD memory map is organized as little-endian (e.g. EWL register is at address 0x2C, ERP register at address
0x2D, and FAULT STATE register at address 0x2E). CTU CAN FD is a 32-bit peripheral, but all functionality of CTU
CAN FD can be used by accessing the core by 8/16 bit accesses (with proper configuration, see settings MODE[RXBAM]
- RX buffer Automatic Mode).

2.4 Time base

CTU CAN FD can have a time base available for Time triggered transmission or Timestamping of received CAN frames.
Availability of such time base depends on integration of CTU CAN FD into a system. If such time base is available, its
immediate value can be read from TIMESTAMP _H and TIMESTAMP L registers. Time base is up-counting unsigned
counter which measures flow of a time within the system where CTU CAN FD is integrated. Width of the time base
may range from 1 to 64 bits, and it is defined by the system integrating CTU CAN FD. Number of active bits of time
base is available in TS _INFO register.

28 CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

2.5 Operating modes

After reset, CTU CAN FD is disabled, and it does not communicate on CAN bus (no transmission, reception, monitoring).
Before CTU CAN FD is enabled, it shall be configured as is explained in 2.8. Once configured, CTU CAN FD can be
enabled by writing SETTINGS[ENA] = 1. When SETTINGS[ENA] = 1 is set, CTU CAN FD starts bus integration,
and joins CAN bus communication after receiving 11 consecutive recessive bits. When CTU CAN FD joins CAN bus
communication, it becomes error-active. During bus integration CTU CAN FD is bus-off. Once CTU CAN FD becomes
error active, it starts communicating on CAN bus. The moment when CTU CAN FD joined CAN bus communication
can be determined by FCS interrupt, and subsequent probing of FAULT STATE register (see 2.12). Basic operating
modes of CTU CAN FD are shown in Figure 2.1.

Disabled

SETTINGS[ENA]=1
SETTINGS[ENA]=0

Reintegrating

Integrating

Write 1 to
COMMAND[ERCRST]

11 recessive
bits

129x 11
recessive bits

Waiting for
Reintegration
(Bus off)

Communicating
(Error active)

TEC >256
or
REC > 256

Figure 2.1: Operating modes

When CTU CAN FD is error-active, it takes part in CAN bus communication. If CTU CAN FD becomes error-passive,
and later bus-off, it stops communicating on CAN bus. CTU CAN FD starts reintegrating to the bus when it receives
Error counter reset command (writing COMMAND[ERCRST] = 1). Reintegration lasts until CTU CAN FD detects 129
sequences of 11 consecutive recessive bits. After 129 such sequences, CTU CAN FD becomes error-active again.

CTU CAN FD can be disabled at any time by writing logic 0 to SETTINGS[ENA] register. In such case:
e CTU CAN FD immediately stops communication on CAN bus, and transmits only recessive bits.

e TEC/REC counters are reset to 0, CTU CAN FD becomes bus-off.

e All TXT buffers move to “Empty” state (see 2.7), content of TXT buffer RAMs remains valid (memories are not
reset).

e RX buffer is flushed (see 2.10.6).

It is recommended for CTU CAN FD not to be transmitting any frame when it is disabled by writing SETTINGS[ENA]
= 0, as this would result in transmission of error frame by other nodes on CAN bus. SW driver operating on CTU CAN
FD shall ensure that none of TXT buffers in CTU CAN FD is in “Ready”, “TX in progress” or “Abort in progress” states
(see 2.9).

st:(gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

Note COMMANDI[ERCRST] is “sticky”. If CTU CAN FD is not yet bus-off, and this command is issued, it will be
remembered by CTU CAN FD, and it will automatically start reintegration upon nearest transition to bus-off.
The reason is, that command can be issued in advance (during regular communication), and CTU CAN FD will
re-integrate as quickly as possible after becoming bus-off (without SW additional delay caused by interaction with
SW driver).

2.6 Initialization sequence

CTU CAN FD initialization sequence shall consist of following steps:

1. Reset (Either HW reset or Soft reset)
2. Configuration of CTU CAN FD:

(a) Configure interrupts as in 2.12
(b) Configure bit rate as in on this page

(c) Configure other features (filters, special modes, etc...)
3. Enable CTU CAN FD by writing SETTINGS[ENA] = 1.

4. Poll on FAULT STATE register, or wait on Fault confinement state changed interrupt (INT _STAT[FCSI]). Inte-
gration is finished when FAULT STATE[ERA]=1 (CTU CAN FD becomes error-active).

5. Initialization is finished, SW driver can send and receive frames.

2.7 De-initialization sequence

CTU CAN FD de-initialization sequence shall consist of following steps:

1. Ensure that no TXT buffer is in any of “Ready”, “TX in progress” or “Abort in progress” states. To do this SW
issues Set abort command (see 2.9) to TXT buffers, and does not insert next frames for transmission into TXT
Buffers.

2. Write SETTINGS[ENA]=0.

2.8 CAN bus configuration

2.8.1 Bit rate

Bit rate on CAN bus is derived from System clock (see 2.1). Basic unit of time on CAN bus is time quanta. Time
quanta is derived from System clock by dividing its frequency by bit rate prescaler. CTU CAN FD has separate prescaler
for nominal bit rate (BTR[BRP] register), and data bit rate (BTR_FD[BRP _FD] register). Bit rate on CTU CAN FD
is configured by specifying Prop Seg, Phase Segl and Phase Seg2 durations (as shown in Figure 2.2). These are
specified in BTR (nominal bit rate) and BTR_FD (data bit rate) registers.

s%?/g CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

S MEEE FIE
8 BASE IDENTIFIER (2|2]= G
// \\\\\\ / \\\\\\\
s - / T -
% int |~ —— oint [~ — —
v Sample point \ —-—_ / Sample point \ - _
Sync_Seg Prop_Seg Phase_Segl Phase_Seg2 Sync_Seg Prop_Seg Phase_Segl Phase_Seg2
Time Time
Quanta BTR[PROP] BTR[PH1 BTR[PH2] Quanta BTR_FD[PROP_FD BTR_FD[PH1_FD)] BTR_FD[PH2_FD)]
1 1 1 1] [I]]]] 1 1 I_ [_I] 1 ~ [I ~] 1 - I[~]]
N N T T T T T T A N T T T T T T 1
/ N / N
N
7/ BTR[BRP] N / _ BTR_FD[BRP_FD] \‘
- ») L
I]]]]] 1]]]]]
I T T T T 1 I T T T T 1
<>
System

clock

Figure 2.2: Bit time

500 Kbit / 2 Mbit example

Common configuration of bit rate on CAN bus within automotive industry is 500 Kbit in nominal bit rate, and 2 Mbit
in data bit rate. Following snippet shows example configuration assuming 100 MHz System clock frequency with sample
point in 80% of bit:

#define CTU_CAN_FD_BASE 0x12000000
#define BTR_ADDR CTU_CAN_FD_BASE+0x24
#define BTR_FD_ADDR CTU_CAN_FD_BASE+0x28

uint32 btr;

btr = (4 << 19); // Time Quanta: 4
btr |= 29; // Prop: 29

btr |= (10 << 7); // Phase 1: 10
btr |= (10 << 13); // Phase 2: 10
btr |= (3 << 27); // 8Jw: 3

can_write_32(BTR_ADDR, btr); // (29+10+10+1)*4=200*10ns=2us=500Kbit

uint32 btr_£fd;

btr_fd = (1 << 19); // Time Quanta: 1
btr_fd |= 29; // Prop: 29
btr_fd |= (10 << 7); // Phase 1: 10
btr_fd |= (10 << 13); // Phase 2: 10
btr_fd |= (3 << 27); // SJW: 3

can_write_32(BTR_FD_ADDR, btr_fd); // (29+10+10+1)#*1=50%10ns=0.5us=2Mbit

2.8.2 Transmitter delay

Transmitter delay is a propagation delay of signal transmited by CTU CAN FD on CAN _TX output, back to CAN_RX
input as is visualized in Figure 2.3. This delay involves propagation of signal to a physical layer transceiver, delay of
transceiver itself, and delay from transceiver to CAN _RX input of CTU CAN FD. CTU CAN FD measures its own
transmitter delay when it transmitts CAN FD frame (regardles of the fact if bit rate is switched in the frame) on recessive

qi.ag CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/KY Version 2.7.0, Commit:5d16182, 2026-02-01

to dominant edge between FDF (EDL), and rO bits as is shown in Figure 2.4. Transmitter delay is readable after its
measurement from TRV _DELAY register. Transmitter delay is measured in multiples of System clock period.

CAN_RX |« CAN_H
h CAN physical layer AN
CTU CANFD Transmitter delay Py . y ¢
transceiver Bus
CAN_TX > CAN_L
Figure 2.3: Transmitter delay
System
clock TRV_DELAY
—»| Measurement [——»
A A
Start Stop
CAN_RX
CAN_TX rpr/epL | 0 | Brs |Esi| bLc

Transmitter delay

Figure 2.4: Transmitter delay measurement

Note Measured transmitter delay includes input delay of CTU CAN FD (which is 2 clock periods of System clock).
Therefore, measured transmitter delay will be always higher by two than actual delay from CAN _TX to CAN_RX
(e.g. if signal propagation from CAN_ TX to CAN_ RX takes 110 ns (11 System clock periods at 100 MHz),
measured transmitter delay will be 13).

Note Transmitter delay measurement is saturated to 255 System clock periods. If delay between CAN _TX and CAN_RX
is higher than 253 System clock periods, only 255 will be measured. With 100 MHz System clock frequency, the
maximal measurable transciver delay is 2,53 us. This is more than most of CAN transceivers need.

2.8.3 Secondary sampling point

Secondary sampling point can be used by CTU CAN FD during data bit rate to detect bit errors. Its position is
configured as a delay from start of bit (Sync_ Seg) in multiples of System clock (not time quanta!). Secondary sampling
point position can be fixed (SSP_ CFG[SSP__ OFFSET] only), derived from Transmitter delay (SSP_ CFG[SSP _OFFSET]
+ TRV_DELAY), or it can be disabled (No SSP) as is shown in Figure 2.5. When Secondary sampling point is disabled,
regular sampling point as configured by BRP_FD register is used by CTU CAN FD when transmitting in data bit rate.

Note Secondary sampling point offset (SSP_CFG[SSP _OFFSET]) is configurable between 0 - 255. Internal range of
secondary sampling point position is 0 - 510 System clock periods.

Note Since CTU CAN FD input delay is 2 System clock periods (minimum time quanta), position of Secondary sampling
point shall be configured to at least 2 to compensate its own input delay (if SSP_ CFG[SSP_OFFSET] < 3 and

9

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

2. FUNCTIONAL DESCRIPTION

SSP_CFG[SSP_SRC] = SSP_SRC_NO_SSP

Secondary
sampling
point

Sampling Point

Start of bit

A 4

SSP_CFG[SSP_OFFSET]
v

> 4+ >

SSP_CFG[SSP_SRC] =
SSP SRC_OFFSET

»
>

TRV_DELAY

Figure 2.5: Secondary sampling point

| | | | |
| | 1 |

Bit-rate Nominal Data |

Sample | start of SSP1 sSSP 2 SsP3
point bit

CAN frame BRS DLC[3] DLC[2] |
| | ssp | DataBit | DataBit |
| | Offset| Timelength | Time length |

<4« -)
| | | | | TImE

>

Figure 2.6: Secondary sampling point 2

SSP_CFG[SSP_SRC] = SSP_SRC_OFFSET], it is impossible to transmit CAN FD frames without detecting bit
error in CTU CAN FDs own transmitted frame).

Note CTU CAN FD can handle at most 7 “bits in flight” between CAN_TX and CAN _RX pins when using secondary
sampling point. E.g. if System clock is 100 MHz, and Data bit rate = 5 Mbit/s, then one data bit time is 20
System clock periods. Then, latest possible position of Secondary sampling point is 20 * 7 = 140 System clock
periods. This limitation applies to final position of secondary sampling point (with SSP_ CFG[SSP _OFFSET] /
TRV __DELAY included). User shall not configure secondary sample point position later than 6 data bit times.

2.8.4 CAN FD support

CTU CAN FD supports both ISO, and non-1SO versions of CAN FD protocol. When ISO protocol version is chosen, CTU
CAN FD is compliant to 1S011898-1 2015. When NON ISO version is chosen, CTU CAN FD is compliant to CAN FD
specification 1.0. To choose between ISO and non-ISO variants, configure SETTINGS[NISOFD] bit. SETTINGS[NISOFD]
shall be modified only when CTU CAN FD is disabled (SETTINGS[ENA] = 0).

2.8.5 Protocol exception handling

CTU CAN FD supports Protocol exception detection. Protocol exception is enabled by MODE[PEX] = 1. MODE[PEX]
shall be changed only when CTU CAN FD is disabled (SETTINGS[ENA]=0). Protocol exception behavior differs for
various CAN implementation types (see 2.1). If MODE[PEX] = 1 and CTU CAN FD detects Protocol exception, CTU

10

st:(;gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

CAN FD enters bus integration state, and waits for 11 consecutive recessive bits to be monitored on CAN _RX signal.
REC/TEC counters are not changed upon Protocol exception, nor is Fault confinement state of CTU CAN FD. When
Protocol exception occurs, STATUS[PEXS] flag is set. To clear STATUS[PEXS], SW shall write COMMAND[CPEXS]
= 1. If MODE[PEX] = 0, and conditions for Protocol exception are valid, CTU CAN FD transmits error frame instead.

2.8.6 Implementation type

ISO11898-1 2015 defines three implementation types of CAN protocol: Classical CAN, CAN FD tolerant and CAN FD
enabled. CTU CAN FD supports all three implementation types, Compliance to each implementation type can be changed
via MODE[FDE] and SETTINGS[PEX] bits. Both of these bits shall be modified only when CTU CAN FD is disabled
(SETTINGS[ENA] = 0).

Implementation MODE[FDE]| SETTING Behavior
type [PEX]
Classical CAN 0 0 When CTU CAN FD detects recessive FDF bit (bit after IDE

in Base frame, bit after RTR/rl in Extended frame), it
responds with error frame.

CAN FD tolerant 0 1 When CTU CAN FD detects recessive FDF bit, it detects
Protocol exception and enters bus integration state.
CAN FD enabled 1 0 CTU CAN FD is able to receive / transmit CAN FD frames.

When CTU CAN FD detects recessive value on position of
“res” bit (one bit after FDF bit), it responds with error frame.

CAN FD enabled - 1 1 CTU CAN FD is able to receive / transmit CAN FD frames.
with protocol When CTU CAN FD detects recessive value on position of
exception “res” bit (one bit after FDF bit), it detects Protocol exception

and enters bus integration state. This configuration tolerates
future extensions of CAN FD protocol (e.g. CAN XL).

Table 2.1: CAN implementation type

Note When CTU CAN FD is configured as Classical CAN / CAN FD tolerant node (MODE[FDE] = 0), and user
attempts to send CAN FD frame (FRAME_ FORMAT WI[FDF _BIT] = 1 in TXT buffer), CTU CAN FD will
ignore frame type in TXT buffer , and send CAN 2.0 frame.

Note When CTU CAN FD is configured as Classical CAN / CAN FD tolerant node, SETTINGS[NISOFD] bit has no
effect.

Note According to 10.9.10 of 1SO11898-1 2015, CAN FD Enabled implementation shall not be set to a mode where
it behaves as CAN FD tolerant implementation. It is therefore users responsibility to use this option only for
evaluation / debugging purposes.

Note According to CAN 2.0 specification, RO and R1 bits of any value shall be accepted by receivers, however 1S0119898-
1 2015 states (Table A.1) that Error frames shall be sent by Classical CAN implementation upon such event. CTU
CAN FD resolves this inconsisency in CAN specifications in favor of 1SO011898-1 2015.

2.8.7 Minimum bit time / Maximal bit rate

System clock period is equal to minimal time quanta, therefore it affects minimum bit rate achievable on CAN bus. CTU
CAN FD has following limitations:

11

28 CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

e Phase_Seg2 >= 2 minimal time quanta. This is valid for both nominal and data bit rate.
e Sync_Seg + Prop_Seg + Phase Segl > 2 minimal time quanta. This is valid for both nominal and data bit rate.

With these conditions, it is possible to reach bit length of 5 time quanta. Note that for nominal bit rate this is possible,
however, at least 8 time quantas per bit time are recommended (see 1.1). For data bit rate, 5 time quantas per bit time
can be used.

As an example, when nominal bit rate is 250 Kbit/s, data bit rate is 1 Mbit/s, minimal possible System clock frequency
is 5 MHz. Note that this is absolute maximum bit-rate, and gives very little margin in sample point position. Therefore
it is recommended to use at least 10 MHz System clock in such case.

2.9 CAN frame transmission

CTU CAN FD transmits CAN frames from TXT buffers. CTU CAN FD contains 2-8 TXT buffers (number of TXT
buffers is selected at synthesis time). To get actual number of TXT Buffers, SW can read TXTB_INFO register. If
“N" TXT buffers are present, then its always buffers 1 - “N". Each TXT buffer can be in one of states as described in
Figure 2.7. TX STATUS register reflects state of TXT Buffers. To control TXT buffer state, SW issues commands to
TX_COMMAND register. There are three types of commands:

Set ready requests TXT buffer to move to “Ready” state.
Set abort requests TXT buffer to move to “Aborted” or “Abort in progress” state.
Set empty requests TXT buffer to move to “Empty” state.

Each TXT buffer stores single CAN frame. A 64 byte CAN FD frame fits to single TXT buffer. TXT buffer is write only
(CAN frame can’t be read back). TXT buffer is accessible only when the buffer is in “Empty”, “TX OK", “TX failed",
“Aborted” or “Parity Error" states. To store CAN frame to a TXT buffer, SW writes to TXT Buffer 1 - TXT Buffer 8
memory regions described in Section 3.

First SW driver stores CAN frame to a TXT buffer, and then issues Set ready command to the TXT buffer to request
transmission of CAN frame. TXT buffer moves to “Ready” state, and CTU CAN FD can transmit frame from this TXT
buffer. When CTU CAN FD starts transmission, the TXT buffer moves to “TX in progress” state. CTU CAN FD starts
transmission from TXT buffer in “Ready” state if it sampled dominant bit during third bit of intermission, or as soon as
CAN bus is idle. Note that in Time triggered transmission mode, the behavior differs (see 2.9.2).

When CTU CAN FD is error-passive, and it was transmitter of previous frame, it suspend consecutive transmission for
8 bit times. When CTU CAN FD transmitted CAN frame succesfully (no arbitration lost, no error frame), TXT buffer
moves to “TX OK” state. If an error frame occurs, or arbitration is lost, TXT buffer moves to “Ready” state and CTU
CAN FD attempts to transmitt again in nearest intermission or bus idle.

Note When CTU CAN FD operates in Bus monitoring mode (MODE[BMM] = 1), or Restricted operation mode
(MODE[ROM] = 1) it always ends up in “TX failed” state when Set ready command is issued, without any
attempt to transmit the frame.

2.9.1 TXT buffer selection

When multiple TXT buffers are in “Ready” state, CTU CAN FD selects highest priority TXT buffer in “Ready” state, and
transmitts CAN frame from this TXT buffer. SW configures priority of TXT buffers in TX PRIORITY register. If two
TXT buffers have equal priority, TXT buffer with lower index has precedence. The overall flow of transmission is shown
in Figure 2.8.

12

%\;?g CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

Set ready Set ready
) 2 Ready s Set abort *
Parity

Error | Transmission [A Transmission
starts unsucessfull

—
TX in Transmission
successful
rogress
. Set abort
yY \ 4 Transmission
Abort In unsucessfull
rogress

Retransmitt

limit reched

Parity Error

Set empty

Legend:

Transmission result > Accessible
Command for SW

* TXT BUFFER BECOMES “ABORTED” ALSO IF IT IS “BACKUP” BUFFER AND
TRANSMISSION FROM “ORIGINAL” TXT BUFFER WAS SUCCESSFUL. SEE TXT BUFFER
BACKUP MODE.

Figure 2.7: TXT buffer states

Note Higher value of TX PRIORITY[TX*P] means TXT Buffer * has higher priority (e.g. if TX PRIORITY[TX1P] =
2 and TX_ PRIORITY[TX2P]=5, then TXT Buffer 2 has priority 5, and TXT Buffer 1 has priority 2. When both
TXT Buffers are in ready state, CTU CAN FD will pick TXT Buffer 2 before TXT Buffer 1).

Note Priority of “backup” TXT Buffers when MODE[TXBBM] = 1 is not configurable by a TX PRIORITY[TX*P]
corresponding to them, but it is configured by a bit corresponding to “original” TXT Buffer. See 2.13.3.

2.9.2 Time triggered transmission mode

CTU CAN FD supports time-triggered transmission mode. To enable this mode, set MODE[TTTM] = 1. In time-
triggered transmission mode, CTU CAN FD will attempt to transmitt frame from highest priority TXT buffer only when
value of Time-Base (see 2.4) reaches Timestamp stored in TIMESTAMP LW and TIMESTAMP _U_ W words of this
TXT Buffer. CTU CAN FD assumes that Time base is an up-counting unsigned counter. When Time base reaches
value stored in TIMESTAMP L W and TIMESTAMP _U_ W, frame stored in TXT buffer is allowed for transmission
(assuming that it is in highest priority TXT buffer in “Ready” state), as is visualized in Figure 2.9. CTU CAN FD will not
transmit the frame immediately, it will transmit the frame when the CAN bus is free. If TXT buffer is in “Ready” state,
and Time base counter did not reach moment of transmission yet, CTU CAN FD waits until this condition is satisfied. If
during this time another node on CAN bus starts transmitting a frame, CTU CAN FD becomes receiver of such frame.
To transmitt CAN frame as soon as possible (no time triggered transmission), SW driver shall store 0x00000000 to
TIMESTAMP_L_ W, TIMESTAMP _U_W words. Note that time triggered transmission is always considered only
from highest priority TXT buffer in “Ready” state. TXT buffer priority is always evaluated first before time triggered
transmission. The behavior of the TXT buffer priority and time triggered transmission is following:

qi.ag CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/KY Version 2.7.0, Commit:5d16182, 2026-02-01

Pick highest priority TXT
Buffer in Ready state
\ 4 Highest priority
2| MODE[TTTM] TXT Buffer in

1 Ready state changes

Y

Wait
Timebase = Timestamp
in TXT Buffer
Y
Attempt to

1 transmit frame at
nearest bus-idle

Figure 2.8: TXT Buffer selection

[Time = Timestamp in

| TXT buffer
|
CAN TX Set ready [1] [
\Zcommand
TXT buffer Ready TX in progress
state
CAN bus Idle SOF | Arbitration
state _
| Time >

Figure 2.9: Time triggered transmission

o If TXT buffer A has higher priority than TXT buffer B, CTU CAN FD will pick frame from TXT buffer A even if
its time of transmission is higher (transmission should start later) than the one from TXT Buffer B.

e If priority of TXT buffers changes (and highest priority TXT buffer in “Ready” state changes), then CTU CAN FD
picks frame from new highest priority TXT buffer in “Ready” state. This is valid as long as frame from previously
selected TXT buffer is waiting for Time base to reach its time of transmission. When frame transmission already
starts, TXT buffer priority is not considered anymore (no frame swapping).

2.9.3 Type of transmitted CAN frame

SW chooses type of transmitted CAN frame by setting the value of FRAME FORMAT W in TXT buffer, and settings
of CTU CAN FD as show in Figure 2.10.

Note When FRAME FORMAT _WI[FDF] = FD _CAN and MODE[FDE] = 0, CTU CAN FD transmits CAN 2.0 frame.
If in such case TXT buffer contains CAN FD frame with more than 8 bytes of data payload, bytes above 8-th byte
will not be sent.

14

28 CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

Transmitting

frame
No Yes
—2- FRAME_FORMAT[FDF] =FD_CAN }——
Y \
N No Yes

[FRAME_FORMAT[RTR] = RTR_FRAME }— { MODE[FDE] =1 |——

yYes \ ¢ v

Transmit CAN 2.0 Transmit CAN 2.0 Transmit CAN FD
remote frame data frame frame

Figure 2.10: TX frame type

Note When FRAME FORMAT W[RTR] = RTR_FRAME and FRAME FORMAT WI[FDF] = FD _CAN, CTU CAN
FD ignores RTR flag and transmits CAN FD data frame (there are no remote frames in CAN FD protocol).

2.9.4 Retransmitt limitation

CTU CAN FD can limit number of retransmissions from single TXT buffer. Retransmitt limitation is enabled when
SETTINGS[RTRLE] = 1. Number of retransmissions is configured in SETTINGS[RTRTH]. First attempt to transmitt
CAN frame does not count as retransmission. Possible configuration options are shown in Table 2.2.

SETTINGS SETTINGS Behaviour

[RTRTH] [RTRLE]

- 0 Frame transmission is attempted without any limitation (until it is
succesfull or unit turns bus-off).

0 1 Frame transmission is attempted only once, there are no retransmission
attempts after first failed transmission (so called one shot mode).

1-15 1 Frame transmission is attempted SETTINGS[RTRTH] + 1 times (initial
transmission + SETTINGS[RTRTH] retransmissions).

Table 2.2: Retransmitt limitation configuration

If SETTINGS[RTRTH] consecutive retransmission are not succesfful (error frame occured or arbitration was lost) from
single TXT buffer, this TXT buffer moves to “TX failed” state. If TXT buffer used for transmission changed between two
transmissions (e.g it was picked due to higher priority), internal counter of retransmissions is erased, and new frame (from
new TXT buffer) has again SETTINGS[RTRTH]+1 transmission attempts. If CTU CAN FD returns to transmission from
original TXT buffer, it does not remember previous number of transmission attempts and again attempts to transmitt
CAN frame SETTINGS[RTRTH]+1 times. Current number of transmission attempts of a single frame is held in an
internal counter which is readable via RETR _CTR register.

2.9.5 Abort

If SW driver previously requested transmission of CAN frame by Set ready command, it can request abort of transmission
by Set abort command. If TXT buffer is still in “Ready” state when it receives Set abort command (transmission did
not start yet), it moves to “"Aborted” state immediately. If TXT buffer is in “TX in progress” state (transmission has
already started), it moves to "Abort in progress’ state. Then the TXT Buffer will move to “Aborted” state upon nearest
error frame or arbitration lost. Note that when TXT buffer is in “Abort in progress’ state, it can move to TX OK state
if current transmission succeeds, or to “TX failed state” if retransmitt limit was reached.

15

ﬂ)<
R

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

2. FUNCTIONAL DESCRIPTION

2.9.6 TXT buffer - Bus-off behavior

When CTU CAN FD becomes bus-off due to TEC > 255, TXT buffers can react to this event in two ways:

1.

All TXT buffers which are in “Ready”, “TX in Progress” or “Abort in Progress’ immediately go to “TX failed” state.
This option is enabled by setting SETTINGS[TBFBO] = 1, and it is default configuration of TXT buffers.

. TXT buffer which was used for transmission at time when CTU CAN FD became bus-off, will behave as if any

other error frame was transmitted. This option is enabled by setting SETTINGS[TBFBO] = 0. If no “Set abort”
command was issued to this buffer, nor retransmitt limit was reached, the buffer will become “Ready”. When CTU
CAN FD finishes reintegration (see 2.5), transmission from this TXT buffer will begin as per regular TXT buffer
selection by priority. This option allows going bus-off and re-integrating without the need of SW interaction with
TXT buffers.

2.9.7 Sample code

#define CTU_CAN_FD_BASE 0x12000000
#define TX_COMMAND_ADDR (CTU_CAN_FD_BASE + 0x74)
#define TXT_BUFFER_1_BASE (CTU_CAN_FD_BASE + 0x100)

/* Insert CAN frame to TXT buffer 1 */
uint32_t frame_format_word = 0;

frame_format_word |= 4; // DLC = 4
frame_format_word |= (1 << 7); // CAN FD Frame
frame_format_word |= (1 << 9); // Switch bit-rate

can_write_32(TXT_BUFFER_1_BASE, frame_format_word) ;

uint32_t id_word = (55 << 18);

// Store frame format word

// Identifier: 55

Note

Note

Note

can_write_32(TXT_BUFFER_1_BASE + 0x4, id_word); // Store identifier word

can_write_32(TXT_BUFFER_1_BASE + 0x8, 1000);

can_write_32(TXT_BUFFER_1_BASE + 0xC, 0); // Transmitt at time 1000
+

can_write_32(TXT_BUFFER_1_BASE + 0x10, OxAABBCCDD); // Data: O0xAA 0xBB 0xCC 0xDD
/* Issue Set ready command */
uint32_t command = O;

command |= 0x2;

command |= (1 << 8);

can_write_32(TX_COMMAND_ADDR, command) ;

// Set Ready command
// Choose TXT Buffer 1
// Issue the command

When CTU CAN FD is enabled by writing SETTINGS[ENA] = 1, it is still bus-off during integration to the CAN
bus. If during this time Set ready command is issued to TXT buffer, TXT buffer immediately moves to “Aborted”
state when SETTINGS[TBFBO] = 1. SW shall wait until node is Error active (either polling FAULT STATE or
via FCS Interrupt) before issuing Set ready command to any TXT buffer.

TXT buffers are not initialized, nor reset. Therefore, before issuing Set ready command, SW shall fill according
TXT buffer with valid CAN frame for transmission.

CTU CAN FD transmitts only reactive Overload frames. There are no internal conditions of CTU CAN FD which
would cause transmission of Overload frame without detecting overload condition.

16

CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
Version 2.7.0, Commit:5d16182, 2026-02-01

2.10 CAN frame reception

CTU CAN FD contains single FIFO-like RX buffer for received CAN frames. Size of the RX buffer is multiple of 32-bit
words. SW can read the size of RX buffer from RX_MEM _INFO register. RX buffer stores two types of CAN frames:

e Regular frame - CTU CAN FD stores regular CAN frame to RX buffer when a CAN frame is received without error
frames on CAN bus. Regular CAN frames contain all the data exchanged in the CAN communication. Regular
frames include Remote Transmission Request frames.

e Error frame - CTU CAN FD stores error frame that occured on CAN bus to the RX buffer.

CAN frames (regular or error) are read by SW from RX buffer by consecutive reads from RX_DATA register. Single read
from RX _DATA register reads one word from RX buffer. RX buffer can operate in one of two modes:

e Automatic mode - When SW reads RX DATA register, CTU CAN FD automatically increments read pointer of
RX buffer FIFO. Use this mode only when RX DATA is read by 32-bit accesses. Writes to COMMAND[RXRPMV]

= 1 have no effect in this mode.

e Manual mode - When SW reads RX_DATA register, CTU CAN FD does not increment read pointer of RX buffer
FIFO. To increment read pointer, SW shall write COMMAND[RXRPMV] = 1. Use this mode when CTU CAN FD

is mapped to a memory space where only 8/16 bit accesses are possible.

Mode of RX buffer is configured by MODE[RXBAM] bit. Section 3 describes CAN frame format in RX buffer and Figure
2.11 shows this format. CAN frame in RX buffer spans from 4 to 20 memory words. Its size is given as:

Size of RX frame in words = 4 + ceil(Data field length / 4)

(Address rx_buff_size -1]
< Write pointer

DATA_61_64_W N

DATA _1_4_W
TIMESTAMP_U_W
TIMETAMP_L_W
IDENTIFIER_W
FRAME_FORMAT_W
TIMESTAMP_U_W
TIMESTAMP_L_W

CAN FD Frame
(64 data bytes)

J\

— RTR frame

IDENTIFIER_W

FRAME_FORMAT_W
DATA_5_8_W
DATA _1_4_W

TIMESTAMP_U_W | CAN2.0/FD frame
TIMESTAMP_L_W (8 data bytes)
IDENTIFIER_W

FRAME_FORMAT_W _

L Address 0 J

J\

Figure 2.11: RX buffer

2.10.1 Frame count

CTU CAN FD contains a counter of CAN frames within the RX buffer. To get value of this counter, SW shall read
RX _STATUS[RXFRCE] register. CTU CAN FD:

17

st:(;gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

e Increments the counter when it stores a frame to RX buffer (regular or error frame)

e Decremented the counter when SW reads a last word of CAN frame from RX buffer.

2.10.2 Error frame reception

When SW sets MODE[ERFM]=1, CTU CAN FD stores Error frames that occur on CAN bus in the RX buffer. If
MODE[ERFM]=0, only regular CAN frames are stored to RX buffer. Each error condition that caused transmission of a
new Error frame is logged as separate Error frame in the RX buffer. Each Error frame in the RX buffer occupies exactly
4 memory words (FRAME_FORMAT _W, IDENTIFIER_W, TIMESTAMP_U_W and TIMESTAMP_L_W).

The error frames are distinguished from regular CAN frames by FRAME FORMAT _WI[ERF] bit. In Error frames,
FRAME FORMAT WI[ERF] = ERF_ERR_FRAME, while in regular CAN frames FRAME FORMAT WIERF] =
ERF_CAN_FRAME. The error frames have following differences from regular CAN frames:

e Only FRAME FORMAT WI[ERF], FRAME FORMAT _W]IIVLD], FRAME FORMAT W[RWCNT],
FRAME FORMAT WI[ERF_ POS]and FRAME FORMAT WI[ERF _TYPE] are valid in FRAME FORMAT _W.
Other fields of FRAME _FORMAT _W are reserved, and shall be ignored by SW reading the Error frame from RX
buffer.

e When FRAME _FORMAT _W]JIVLD]=1, IDENTIFIER_W contains valid CAN identifier. Otherwise, IDENTI-
FIER W value contains all zeroes.

e TIMESTAMP_U W and TIMESTAMP L W contain CTU CAN FD timebase value at the moment when when
error condition causing the Error frame transmission occured.

Note When CTU CAN FD operates in Restricted operation mode (MODE[ROM]=1), Error frames are not stored to RX
buffer since error condition on the bus causes CTU CAN FD to move to Bus Integration state, and not transmit
the Error frame.

Note Rules related to setting of ERR _CAPT (Error type priorities, etc...) apply also to Error frames stored in RX buffer.

Note In regular CAN frame, FRAME FORMAT _WI[IVLD] is always 1. If FRAME FORMAT _WIIVLD]=1 in Error
frame, then the IDENTIFIER _W contains a valid CAN identifier. When FRAME _FORMAT _WI[IVLD] = 1, then
IDENTIFIER _W can be used to track the CAN frame that lead to Error frame.

Note The error frames ocurring in CAN frames with Base identifier before IDE bit have FRAME _FORMAT _W[IVLD]=0.
The error frames ocurring in CAN frames with Extended identifier before RTR/RRS bit have FRAME _FORMAT _ W[IVLD]=0.

Note When CTU CAN FD stores error frame with FRAME _FORMAT _WIIVLD]=0 to RX Buffer, every such error
frame is stored regardless of frame filters configuration. Therefore, invalid identifiers are not subject to frame
filtration.

2.10.3 RX buffer memory

RX buffer memory provides following status information:
e Number of free memory words in RX_MEM _INFO[RX_ MEM FREE].
e Write pointer position in RX_POINTERS[RX _WPP].

e Read pointer position in RX_POINTERS[RX _RPP].

18

st:(gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

2.10.4 RX buffer status

RX buffer with no stored CAN frames is empty. When RX buffer is empty, then RX STATUS[RXE]=1. RX buffer with
all memory words occupied by CAN frames is full. When RX buffer is full, RX_STATUS[RXF]=L1.

Note If RX buffer has e.g. 2 free memory words it is not full, however even smallest CAN frame does not fit into the
RX buffer (smallest CAN frame takes 4 memory words).

2.10.5 Overrun

Overrun occurs when there is not enough free space in RX buffer during reception of CAN frame. Upon overrun, CTU
CAN FD drops currently received frame (RX buffer FIFO overflows), and sets Overrun flag. Overrun flag is sticky
(it remains set until SW clears it). SW reads Overrun flag from STATUS[DOR]. SW clears Overrun flag by writing
COMMANDI[CDOQ]=1.

2.10.6 Flush

To flush RX buffer, SW shall write COMMAND[RRB]=1. The flush of RX buffer has following effect:

e Content of RX buffer is kept (memory is not erased)
e Read and write pointers become 0

e Frame counter becomes 0.

After flush RX buffer is as-if there are no frames in it. If SW issues flush during CAN frame reception, currently received
frame is also droped.

2.10.7 Inconsistency protection

Reading CAN frame from RX buffer involves multiple reads of RX DATA register. Each read increments read pointer
inside RX buffer (read operation with side effect). If an error occurs (e.g. bus error, ECC error) during read from
RX _DATA register, then read data could be lost. SW driver now has two problems:

e CTU CAN FD incremented RX buffer read pointer. SW driver lost the word, therefore it can’t read the frame
correctly.

e SW driver may have lost track on what part of the frame was read from RX buffer. E.g. if an error ocurred during
read of FRAME FORMAT _W, the SW driver does not know how many words does the remaining CAN frame
contains.

SW driver can read RX_STATUS[RXMOF] to recover from such state. When next read from RX _ DATA regis-
ter is about to return FRAME FORMAT W (beginning of new frame), RX STATUS[RXMOF] = 0. Otherwise
RX_STATUS[RXMOF] = 1 (RX buffer read pointer points to middle of frame). If SW driver gets into inconsistent
state during readout of frame, it shall repetitively read from RX _DATA until RX_STATUS[RX _MOF] = 0. Upon such
condition, RX _DATA points to FRAME _FORMAT _W word of new frame, or RX buffer is empty (if the error occured
during readout of only frame in RX buffer).

19

st:(gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

2.10.8 Timestamping

When CTU CAN FD receives CAN frame, it stores its timestamp in TIMESTAMP _L W, TIMESTAMP_U_ W words
within RX buffer. CTU CAN FD samples thevalue of external Time Base to obtain the timestamp of CAN frame. CTU
CAN FD samples the Timestamp of received frame in:

e Sample point of Start of Frame bit. This mode is configured by RX SETTINGS[RTSOP]=1

e 6th bit of End of Frame (moment when received CAN frame is considered valid according to 1S011898-1 2015).
This mode is configured by RX SETTINGS[RTSOP]=0.

2.10.9 Frame filtering

CTU CAN FD filters received CAN frames by HW filters. There are two types of filters in CTU CAN FD: Bit filter and
Range filter. There are three instances of Bit filter (A,B,C) and one instance of Range filter. If received CAN frame
passes at least one filter, CTU CAN FD stores the frame to RX buffer. CTU CAN FD filters the received frames only
if Acceptance filter mode is enabled (MODE[AFM] = 1). SW shall modify MODE[AFM] only when CTU CAN FD is
disabled (SETTINGS[ENA] = 0). When Acceptance filter mode is disabled, CTU CAN FD stores every received CAN
frame to RX buffer.

SW can configure each filter to accept only certain types of:

e CAN frame types (CAN 2.0 frame / CAN FD frame)

e Identifier types (frame with Base identifier only, frame with Base + Extended identifier).

SW can configure this behavior in FILTER _CONTROL register. SW disables filter by setting all bits in FILTER _ CONTROL
register belonging to this filter to 0. Figure 2.12 describes Frame filters operation.

20

st%g CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/rf Version 2.7.0, Commit:5d16182, 2026-02-01

Received
frame
No
MODE[ACF] =1
Yes
Is it RTR frame? [SETTINGS[FDRF] =1 I&
No
Frame type? - No
CAN 2.0 CAN FD
FILTER_CONTROL[F*NB] =1 FILTER_CONTROL[F*FB] =1
No No .
OR OR >
FILTER_CONTROL[F*NE] =1 FILTER_CONTROL[F*FE] =1
Yes Yes
Base Extended
FILTER_CONTROL[F*NB] =1 FILTER_CONTROL[F*BE] =1
No No
- OR OR >
FILTER_CONTROL[F*FB] =1 FILTER_CONTROL[F*FE] =1
Yes Yes
Filter type
Bit Range
No FILTER_*_VALUE & FILTER_*_MASK FILTER_RAN_LOW <= IDENTIFIER_W N
- == && Oy
IDENTIFIER_W & FILTER_*_MASK FILTER_RAN_HIGH >= IDENTIFIER_W
Yes Yes

Figure 2.12: Frame filters operation (* stands for A/B/C/R based on filter type)

Bit filter

Bit filter checks if received CAN frame identifier is equal to predefined identifier in FILTER X VALUE register (X=A,B,C
based on filter instance). Only bits given by filter mask in FILTER X MASK register are compared.

Note When using Bit filter to filter frames with Base identifiers only, set FILTER X MASK]17:0] = 0b000000000000000000.

Range filter

Range filter checks if received CAN frame identifier is within FILTER _RAN_LOW to FILTER _RAN_HIGH decimal
range.

Note When using Range filter to filter frames with Base identifiers only, set FILTER _RAN LOW][17:0] = 0b000000000000000000
and FILTER_RAN_HIGH[17:0] = 0b111111111111111111.

2.10.10 Sample code 1 - Frame reception in automatic mode (32-bit access)

#define CTU_CAN_FD_BASE 0x12000000
#define RX_DATA_ADDR (CTU_CAN_FD_BASE + 0x6C)
#define RX_STATUS_ADDR (CTU_CAN_FD_BASE + 0x68)

21

28 CTU CAN FD IP Core - Datasheet
/tfg Version 2.7.0, Commit:5d16182, 2026-02-01

2. FUNCTIONAL DESCRIPTION

/* Poll on RX buffer until there is a frame in it */

uint32_t rx_st
do {
rx_status

atus;

= can_read_32(RX_STATUS_ADDR) ;

} while ((rx_status & 0x1) == 0)

/* Read frame
uint8_t datal6
uint32_t tmp;
uint32_t ffw =
uint32_t id =
uint32_t ts_1
uint32_t ts_h

uint32_t rwcnt

for(int i = 0;
tmp = can_
data[ix*4]
data[i*4+1
data[i*4+2
data[i*4+3

from RX buffer */
4];

can_read_32(RX_DATA_ADDR) ;
can_read_32(RX_DATA_ADDR) ;
= can_read_32(RX_DATA_ADDR);
= can_read_32(RX_DATA_ADDR) ;

= (ffw >> 11) & Ox1F;
i < rwent - 3; i++){
read_32(RX_DATA_ADDR);
= tmp & OxFF;

1 = (tmp >> 8) & OxFF;
] = (tmp >> 16) & OxFF;
] = (tmp >> 24) & OxFF;

2.10.11 Sample code 2 - Frame reception in manual mode (8-bit access)

#define CTU_CA
#define RX_DAT
#define RX_STA
#define COMMAN

N_FD_BASE 0x12000000
A_ADDR (CTU_CAN_FD_BASE + 0x6C)
TUS_ADDR (CTU_CAN_FD_BASE + 0x68)
D_ADDR (CTU_CAN_FD_BASE + 0xC)

#define MOVE_RX_BUF_READ_PTR() can_write_8(COMMAND_ADDR, 1 << 2)

/* Poll on RX buffer until there is a frame in it */

uint8_t rx_status;

do {
rx_status
} while ((rx_s

/* Read frame
uint8_t datal6
uintl16_t ffw =

ffw |= (((uint16_t)can_read_8(RX_DATA_ADDR + 0x1)) << 8);

MOVE_RX_BUF_RE

= can_read_8(RX_STATUS_ADDR) ;
tatus & 0x1) == 0)

format word and move to RX pointer */
4];
(uint16_t)can_read_8(RX_DATA_ADDR);

AD_PTR() ;

/* Read CAN identifier and move RX pointer up to first data word */

uint32_t id =

id |= ((uint32_t)can_read_8(RX_DATA_ADDR + 0x1)) << 8;
id |= ((uint32_t)can_read 8(RX_DATA_ADDR + 0x2)) << 16;
id |= ((uint32_t)can_read 8(RX_DATA_ADDR + 0x3)) << 24;

(uint32_t)can_read_8(RX_DATA_ADDR);

22

28 CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

for (int i = 0; i < 3; i++)
MOVE_RX_BUF_READ_PTR(Q);

/* Read data bytes */

uint16_t rwent = (ffw >> 11) & Ox1F;

for(int i = 0; i < rwent - 3; i++){
datali*4] = can_read 8(RX_DATA_ ADDR);
data[i*4+1] = can_read_8(RX_DATA_ADDR + 0x1);
data[i*4+2] = can_read_8(RX_DATA_ADDR + 0x2);
data[i*4+3] = can_read_8(RX_DATA_ADDR + 0x3);
MOVE_RX_BUF_READ PTR();

2.10.12 Sample code 3 - Bit filter configuration

#define CTU_CAN_FD_BASE 0x12000000
#define FILTER_CONTROL_ADDR (CTU_CAN_FD_BASE + 0x5C)
#define FILTER_A_VAL_ADDR (CTU_CAN_FD_BASE + 0x40)
#define FILTER_A_MASK_ADDR (CTU_CAN_FD_BASE + 0x3C)

uint32_t filter_mask = OxF << 18; // Compare 4 LSBs of Base ID
uint32_t filter_val = 0x2 << 18; // Must be equal to 0x2 (0010)

/* Configure filter A */
can_write_32(FILTER_A_VAL_ADDR, filter_val);
can_write_32(FILTER_A_MASK_ADDR, filter_mask);

/* Enable reception of CAN 2.0 and CAN FD frames with Base identifiers only */
uint32_t filter_ control = 0x5; // FANB, FAFB
can_write_32(FILTER_CONTROL_ADDR, filter_control);

2.11 Fault confinement

SW can read Fault confinement state of CTU CAN FD from FAULT STATE register. Figure 2.13 shows the Fault
confinement state transition diagram. CTU CAN FD shows Fault confinement counters in REC and TEC registers.
These counters correspond to transmitt error counter, and receive error counter as defined in 1S011898-1. CTU CAN
FD additionally contains counters distigushing between errors detected in nominal bit rate, and errors detected in data
bit rate. To read Nominal bit rate error counter, SW shall read ERR_NORM register. To read Data bit rate error
counter, SW shall read ERR_FD register. CTU CAN FD increments each error counters by 1 when it detects error in
the respective bit rate.

When CTU CAN FD is in test mode (MODE[TSTM] = 1), SW can change all four counters (REC, TEC, ERR_NORM,
ERR_FD). SW can set these counters via CTR_PRES register. Thresholds for Error warning limit, and transition to
error passive are in EWL and ERP registers. By default, EWL and ERP corresponds to I1SO11898-1. In test mode
(MODE[TSTM] = 1), SW can change EWL and ERP registers.

23

28 CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

TEC >= ERP TEC < ERP Set Error
or .
and Active

REC>= ERP REC < ERP

\ 4

Error
. Bus-off
Passive TEC > 255

Figure 2.13: Fault confinement

2.12 Interrupts

CTU CAN FD generates interrupts upon various events. Each interrupt source has three parameters:
e Interrupt mask - Set by INT MASK_SET, cleared by INT _MASK_ CLR.
e Interrupt enable - Set by INT _ENA_SET, cleared by INT _ENA_CLR.
e Interrupt status - Set by HW upon event occurence, cleared by writing to INT _STAT.

Figure 2.14 shows the relationship between interrupt parameters. CTU CAN FD sets Interrupt status when a certain
condition. To set the Interrupt status, its corresponding bit of Interrupt mask must be 0 (interrupt is unmasked). If
Interrupt status is set, and corresponding interrupt is enabled, Interrupt is generated. Interrupt status can be read from
CTU CAN FD via INT _STAT register. Note that when interrupt status is about to be set by HW at the same moment
as it is being cleared by SW, interrupt remains set (set has priority over clear).

Interrupt Event/Condition Clear

Set L Set Interrupt

> Interrupt

0 Status Contribution to
Clear Mask : Interrupt output
Set
—» Interrupt
Clear 1 Enable

Figure 2.14: Interrupts

2.12.1 Frame transmission and reception

When CTU CAN FD transmitts CAN frame succesfully (no error frame until the end of EOF), it generates TX interrupt
(INT_STAT[TXI]). When CTU CAN FD receives CAN frame successfully (no error frame until one bit before the end of
EOF), it generates RX interrupt (INT _STAT[RXI]).

2.12.2 Fault confinement

When Transmitt error counter (TEC), or Receive error counter (REC) reach value in EWL register, CTU CAN FD
generates Error warning limit interrupt (INT _STAT[EWLI]). When Fault confinement state changes, CTU CAN FD

24

st:(;gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

generates Fault confinement state interrupt (INT_STAT[FCSI]). CTU CAN FD sets INT _STAT[FCSI] upon any Fault
confinement state change (even bus-off to error-active).

2.12.3 TXT buffers and RX buffer

When Overrun occurs on RX buffer, CTU CAN FD generates data overrun interrupt (INT _STAT[DOI]). When RX buffer
is full, CTU CAN FD generates RX buffer full interrupt (INT _STAT[RXFI]). If RX buffer is still full after INT _STAT[RXFI]
was cleared, CTU CAN FD generates the interrupt again. When there is at least one CAN frame stored in RX buffer, CTU
CAN FD generates RX buffer not empty interrupt (INT _STAT[RBNEI]). When any TXT buffer moves from “Ready”,

“TX in progress” or “Abort in progress’ states to any of “TX OK", “Aborted”, “TX failed" or “Parity Err" states, CTU
CAN FD generates TXT buffer HW change interrupt (INT_STAT[TXBHCI]).

Note The INT_STAT[TXBHCI] has a corner-case. When a TXT Buffer is in “Ready” state, and moves to “Aborted”
(due to SW writing TX _COMMAND[TXCA]=1), CTU CAN FD does not set INT_STAT[TXBHCI]. The meaning
of INT_STAT[TXBHCI] is following: CTU CAN FD sets INT_STAT[TXBHCI] when TXT Buffer changed its
state due to a CAN protocol core event (error frame occured on the bus, frame transmission finished, etc...). Since
writing TX COMMAND[TXCA]=1 is not a CAN protocol core event (it is an event caused by SW action), the
INT _STAT[TXBHCI] is not set.

2.12.4 Error and Overload frame

When CTU CAN FD starts Error frame transmission, it generates Bus error interrupt (INT _STAT[BEI]). When CTU
CAN FD transmits overload frame, it generates Overload frame interrupt (INT_STAT[OFI]).

2.12.5 Other

When CTU CAN FD switches bit rate on CAN bus, it generates Bit rate switch interrupt (INT _STAT[BSI]). When CTU
CAN FD looses arbitration, it generates Arbitration lost interrupt (INT _STAT[ALI]).

25

28 CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

2.13 Fault Tolerance

CTU CAN FD implements following fault tolerance mechanisms:

e Parity protection on RX buffer RAM
e Parity protection on TXT Buffer RAMs

e TXT Buffer Backup Mode (MODE[TXBBM)]).
Following conditions must be met for these mechanisms to operate:

e CTU CAN FD must contain support for parity protection (STATUS[SPRT]=1). If STATUS[SPRT]=0, CTU CAN
FD contains no parity protection (since it was not synthesized with it), and this section is not applicable.

e SW drivers sets SETTINGS[PCHKE] = 1. This bit enables parity error detection. SW shall modify SET-
TINGS[PCHKE] only when SETTINGS[ENA] = 0.

2.13.1 Parity protection on RX buffer RAM

When CTU CAN FD stores CAN frame to RX buffer RAM, it adds single parity bit to each word of RX buffer RAM.
When SW driver reads the frame from RX buffer RAM, it can check if parity error occured in the frame by reading
STATUS[RXPRE] bit. If parity bit in the word read from RX buffer RAM is not equal to calculated parity bit, CTU CAN
FD sets STATUS[RXPRE]. CTU CAN FD sets STATUS[RXPRE] upon each read from RX_DATA register with parity
error.

A single-event upset (SEU) in RX buffer RAM can potentially modify FRAME _FORMAT _W[DLC] word of a frame in
RX buffer RAM. Therefore SEU may hamper the length of the RX frame as seen by SW driver, and thus get RX buffer
into inconsistent state where SW driver has read only part of a received frame. In this situation, all further frames read
from RX buffer would be corrupted. To avoid this situation, SW driver shall use following procedure when reading RX
frames from RX buffer:

#define CTU_CAN_FD_BASE 0x12000000
#define STATUS_ADDR (CTU_CAN_FD_BASE + 0x8)
#define COMMAND_ADDR (CTU_CAN_FD_BASE + 0xC)
#define RX_STATUS_ADDR (CTU_CAN_FD_BASE + 0x68)
#define RX_DATA_ADDR (CTU_CAN_FD_BASE + 0x6C)

/* Read frame from RX buffer RAM, and check parity error.x*/

uint8_t datal[64];

uint32_t tmp;

uint32_t ffw = can_read_32(RX_DATA_ADDR) ;

uint32_t id = can_read_32(RX_DATA_ADDR);

uint32_t ts_1 = can_read_32(RX_DATA_ADDR);

uint32_t ts_h = can_read_32(RX_DATA_ADDR);

/* If Parity error is in FRAME_FORMAT_W, RWCNT might be unreliable. */
if (can_read_32(STATUS_ADDR) >> 10) & 0Ox1)

goto rx_buffer_flush;

26

28 CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

uint32_t rwent = (ffw >> 11) & Ox1F;

for(int 1 = 0; i < rwent - 3; i++){
tmp = can_read_32(RX_DATA_ADDR) ;
datal[i*4] = tmp & OxFF;
data[i*4+1] (tmp >> 8) & OxFF;
data[i*4+2] (tmp >> 16) & OxFF;
data[i*4+3] = (tmp >> 24) & OxFF;

if (can_read_32(STATUS_ADDR) >> 10) & 0x1)
goto parity_err_handler;

}
return RX_FRAME_READ_OK;

/* Read out corrupted RX frame until start of new frame. */
parity_err_handler:
int i=0;
while (i < 16) {
if (((can_read_32(RX_STATUS_ADDR) >> 2) & 0x1) == 0){
can_write_32(COMMAND_ADDR, 0x200);
return RX_FRAME_DROPPED;

b
i++;
can_read_32(RX_DATA_ADDR) ;
b
/* If we get here, there is a danger that RX buffer is not in consistent state. */
rx_buffer_ flush:

can_write_32(COMMAND _ADDR, 0x202);
return RX_BUFFER_RESET;

Note The example above assumes that RX buffer is read in Automatic mode (MODE[RXBAM]=1). However, if single
word from RX buffer is read via e.g. 4 x 8-bit accesses in MODE[RXBAM]=0, CTU CAN FD sets STATUS[RXPE]
upon each read from a RX_DATA which contains parity error.

Note Writing COMMAND[CRXPE]=1 by SW clears STATUS[RXPE] bit.

Note When SETTINGS[PCHKE] = 0, CTU CAN FD ignores parity error detected in RX buffer (STATUS[RXPE] is not
set, and COMMAND|[CRXPE] has no effect).

Note When writing RX buffer RAM via Test Registers (see 2.16.5), parity bit of corresponding word of RX buffer RAM
is not updated. See 2.13.4
2.13.2 Parity protection on TXT Buffer RAMs

When SW stores a CAN frame to TXT Buffer, CTU CAN FD appends a parity bit to each word in the TXT Buffer RAM.
When CTU CAN FD attempts to transmit a frame from TXT Buffer where the frame contains a bit flip, CTU CAN FD
behaves like so:

27

s%f/;/ CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

1. If CTU CAN FD detects parity error in FRAME_FORMAT _W, IDENTIFIER_W, TIMESTAMP_U_ W or TIMES-
TAMP L W it does not attempt to transmit the CAN Frame.

2. If CTU CAN FD does not detect parity error in any of TXT Buffer words mentioned in previous point, it attempts
to transmit the CAN Frame.

3. If CTU CAN FD detects parity error in any of DATA_1 4 W - DATA 61 64 W words during transmission of
CAN frame, CTU CAN FD starts transmitting an error frame.

If CTU CAN FD detects a parity error in TXT Buffer RAM as described in Steps 1 or 3, the TXT Buffer moves to “Parity
Error” state as shown in 2.7, and CTU CAN FD sets STATUS[TXPE] bit.

Note If CTU CAN FD detects a parity error in TXT Buffer, SW shall write the whole CAN frame to TXT Buffer again
before it attempts to use it for further transmissions.

Note To clear STATUS[TXPE] bit, SW shall write COMMAND[CTXPE]=1.

Note When SETTINGS[PCHKE]=0, CTU CAN FD ignores parity errors detected in TXT buffers (STATUS[TXPE] is
not set, COMMAND[CTXPE] has no effect, and TXT Buffers never move to Parity Error state).

Note When SW writes TXT Buffer RAM via Test Registers (see 2.16.5), parity bit of corresponding word in TXT Buffer
RAM is not updated. See 2.13.4

Note CTU CAN FD does not detect parity errors in FRAME _TEST _W. Purpose of FRAME _TEST W is to inten-
tionally corrupt transmitted frame (e.g. for testing of error scenarios on CAN bus). Such feature is most likely not
usefull in applications which require parity protection (high reliability application which aim for fault tolerance).

2.13.3 TXT Buffer Backup mode

When MODE[TXBBM]=1, CTU CAN FD operates in TXT Buffer Backup mode. In TXT Buffer Backup mode, TXT
Buffers with adjacent indices form pairs (e.g. if TXTB_INFO[TXT_BUFFER _COUNT]=8 (CTU CAN FD contains 8
TXT Buffers) there are 4 TXT Buffer pairs: 1-2, 3-4, 5-6, 7-8) as is shown in Figure 2.15.

TXT Buffer 2 TXT Buffer 8
(backup) (backup)

TXT Buffer 1 TXT Buffer 7

Figure 2.15: TXT Buffer pairs

Operation of CTU CAN FD in TXT Buffer Backup mode provides additional fault tolerance since TXT Buffer with higher
index within TXT Buffer pair serves as “backup” in case of parity error in “original” TXT Buffer. The operation of CTU
CAN FD in TXT Buffer Backup mode is shown in Figure 2.16 and explained in this section.

When MODE[TXBBM]=1, and CTU CAN FD detects a parity error in “original” TXT Buffer RAM, such TXT Buffer
moves to “Parity Error” state, and CTU CAN FD attempts to transmit frame from its “backup” TXT Buffer (e.g. if CTU
CAN FD detects parity error in TXT Buffer 3, it attempts to transmit a frame from TXT Buffer 4). If CTU CAN FD
succesfully transmits a frame from “original” TXT Buffer, its “backup” Buffer moves to “Aborted” state (CTU CAN FD
does not transmit frame in the “backup” TXT Buffer).

qi.ag CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/KY Version 2.7.0, Commit:5d16182, 2026-02-01

When CTU CAN FD is transmitting a frame from a “backup” TXT Buffer due to parity error in “original” TXT Buffer,
and it detects parity error also in “backup” TXT Buffer RAM, CTU CAN FD sets STATUS[TXDPE] bit (Double parity
error).

When CTU CAN FD operates in TXT Buffer Backup mode, SW control of TXT Buffers has following differences
compared to MODE[TXBBM]=0 scenario:

e Priorities of both TXT Buffers within TXT Buffer pair are equal, and they are given by TX PRIORITY[TX*P] of
“original” TXT Buffer (e.g. priority of TXT Buffers 1 and 2 is given by TX _PRIORITY[TX1P], and TX _PRIORITY[TX2P]
has no effect).

e CTU CAN FD automatically applies commands issued by SW to each “original” TXT Buffer also to its corresponding
“backup” TXT buffer (e.g. if SW gives command to TXT Buffer 1 (TX_COMMAND[TXB1] = 1), CTU CAN FD
automatically applies it also to TXT Buffer 2).

It is assumed that SW stores equal CAN frames to both TXT Buffers from TXT Buffer pair when attempting to send
CAN frame. In such case, the effect of TXT Buffer Backup mode is following: If parity error occurs in “original” TXT
Buffer RAM, the same frame is transmitted from “backup” TXT buffer.

Highest priority
OB in “Ready” state

Parity Errorin first 4 | Yes
words of OB RAM.
No Parity errorin
Succesfull DATA_*_* words
transmission of OB RAM.
»| OB->TXin Progress
Error f
OB -> Ready Arbitration los v
[} Y 0B -> Parit
~ - y Error
No SETTINGS[RTR,LE], _,1 Set STATUS[TXPE]=1 | ves
and Retransmit limit . e
reached? Parity error in first 4
- words of BB RAM?
Yes Parity errorin
Successfull No ¢ DATA_*_* words
transmission of BB RAM.
BB -> TX In Progress
Error frame or
14 Arbitration lost BB -> Ready
SETTINGS[RTRLE] =1 [no }
and Retransmit limit
reached?
Yes
Y \ Y Y Y
OB -> TX OK OB -> TX Failed BB -> Parity Error
- ->
BB -> Aborted BB -> Aborted BB > TX OK BB -> TX Error Set STATUS[TXDPE]=1

Legend: OB - “original” TXT Buffer
BB — “backup” TXT Buffer

Figure 2.16: Operation in TXT Buffer Backup Mode

Note Storing equal frames to both TXT Buffers by separate memory accesses is intended by design. CTU CAN FD does
not automatically store this frame to both TXT Buffers to avoid effect of potential SEU in the moment of storing

29

st:(gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

the frame to TXT Buffer. If such SEU occured, it could happend that frame is stored to both TXT Buffers with
parity error already in it.

Note SW does not necessarily need to store equal frames to both TXT Buffers from a TXT Buffer pair. It may simply
store any frame which shall be transmitted if parity error occurs in “original” TXT Buffer to “backup” TXT Buffer.

Note SW shall set MODE[TXBBM] = 1 together with SETTINGS[PCHKE] = 1. If MODE[TXBBM] = 1 together with
SETTINGS[PCHKE] = 0, CTU CAN FD ignores parity errors in “original” TXT Buffers and never transmits frame
from “backup” TXT Buffers.

Note If CTU CAN FD detects parity error in “original” TXT Buffer during CAN frame transmission, and another TXT
Buffer with Higher priority than currently selected TXT buffer pair moved to Ready state (due to SW issuing
Set Ready command), CTU CAN FD will attempt to transmit frame from higher priority TXT Buffer during next
transmission (ignoring “"backup” TXT Buffer).

Note TXT Buffer Backup mode is supported only when CTU CAN FD contains even number of TXT Buffers. If CTU
CAN FD contains odd number of TXT Buffers, there exists one TXT Buffer which has no “backup” buffer. In such
case SW shall not use this spare “original” TXT Buffer when MODE[TXBBM)] = 1. If this TXT Buffer is available
used when MODE[TXBBM], behavior of CTU CAN FD is undefined.

2.13.4 Parity protection testing

When Test registers memory region (see Section 3) is present in CTU CAN FD (STATUS[STRGS] = 1), write to TXT
Buffer / RX buffer RAMs via this memory region does not update parity bit value stored in each memory word of TXT
Buffer / RX buffer RAMs. This allows on-chip verification of parity detection capabilites on both TXT Buffer / RX buffer
RAMs. Following sequence checks parity detection capabilities on RX buffer RAM:

1. CTU CAN FD receives CAN frame to RX buffer RAM.
2. SW reads RX buffer RAM memory via Test Registers memory region (reffer to [1] for details of such procedure).

3. SW modifies a bit in a memory word of CAN frame read in previous step, and stores such modified frame back to
RX buffer RAM via Test Registers memory region.

4. SW reads a frame from RX buffer via RX_DATA register, and then reads STATUS[RXPE]. If STATUS[RXPE] =
1, then parity error detection mechanism on RX buffer RAM works correctly.

Following sequence checks parity detection capabilities of TXT Buffer RAM:

1. SW inserts CAN frame to TXT Buffer.

2. SW reads the frame via Test Registers memory region, modifies a bit in random word, and stores back such word
via Test Registers memory region.

3. SW sends Set ready (via TX COMMAND register) command to a TXT Buffer where CAN frame was stored in
previous two steps.

4. CTU CAN FD attempts to transmit a frame from this TXT Buffer (assuming no other TXT Buffer is in “Ready”
state). When reading a memory word which contains bit-flip, CTU CAN FD sends error frame, and sets STA-
TUS[TXPE]=1.

5. SW reads STATUS[TXPE]. If yes STATUS[TXPE]=1, parity detection mechanism on TXT Buffer RAM works
correctly.

30

st:(gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/tf Version 2.7.0, Commit:5d16182, 2026-02-01

Note When SW flips a random bit in TXT Buffer RAM, it must flip a bit in memory words which will be read by
CTU CAN FD when it attempts to transmit the frame. E.g. if SW flips a bit in DATA_61 64 W, but inserted
CAN frame only contains 8 data bytes (FRAME FORMAT _W[DLC]=1000), CTU CAN FD will not attempt to
read DATA 61 64 W word from TXT Buffer RAM (it will only read DATA 1 4 W and DATA 5 8 W), and
therefore it will not set STATUS[TXPE] bit.

Note When accessing RX buffer / TXT Buffer RAMs via Test Registers Memory region, TSTCTRL[TMENA] (test
access enable bit) must be set only when the access is executed, not during operation of the core. Typically, such
access consists of:

1. Set TSTCTRL[TMENA]=1.
2. Read / Write RX buffer / TXT Buffer RAM via TST_DEST, TST_WDATA, TSTCTRL, TST_RDATA registers.

3. Set TSTCTRL[TMENA]=0.

2.14 Special modes

2.14.1 Loopback mode

In Loopback mode, CTU CAN FD stores every transmitted CAN frame to RX buffer. Such frame is called Loopback
frame. Altough CTU CAN FD receives Loopback frame to RX buffer, CTU CAN FD still acts as a transmitter, therefore
it does not acknowledge the Loopback frame on CAN bus. To sucesfully transmit Loopback frame, at least one of
conditions shall be valid:

e The frame shall be acknowledged by other node on CAN bus.
e CTU CAN FD shall operate in Self-Acknowledge mode (MODE[SAM]=1).
A Loopback frame differs from CAN frame received on the CAN bus in:

e FRAME_FORMAT _WI[LBPF]=L1 - Indicates the frame is a Loopback frame

e FRAME_FORMAT _WI[LBTBI] - Contains index of TXT Buffer used to transmit the Loopback frame. This field
is reserved when FRAME_FORMAT _ W[LBPF]=0.

Note Loopback frame is a “regular CAN frame” in context of RX buffer frame types (see. 2.10).

Note The frame filtering applies also on loopback frames.

Loopback mode is enabled when SETTINGS[ILBP]=1. SW shall modify SETTINGS[ILBP] only when CTU CAN FD is
disabled (SETTINGS[ENA] = 0).

2.14.2 Self test mode

In Self test mode, CTU CAN FD considers transmitted frame valid even if does not receive dominant bit during ACK
slot. SW can use this mode together with Loopback mode to verify operation of CTU CAN FD when it is a single node
on a bus. SW enables Self test mode by setting MODE[STM]=1. SW shall modify MODE[STM] only when CTU CAN
FD is disabled (SETTINGS[ENA] = 0).

31

st:(;gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

2.14.3 Acknowledge forbidden mode

When Acknowledge forbidden mode is enabled, CTU CAN FD receiving CAN frame does not transmitt dominant bit
during ACK slot even if received CRC matches calculated CRC. SW can enable Acknowledge forbidden mode by setting
MODE[ACF] = 1. SW shall modify MODE[ACF] only when CTU CAN FD is disabled (SETTINGS[ENA] = 0).

2.14.4 Self acknowledge mode

When Self acknowledge mode is enabled, CTU CAN FD sends dominant ACK bit even when it transmitts CAN frame and
it receives CRC matching to computed CRC. Self acknowledge mode is enabled when MODE[SAM] = 1. MODE[SAM]
shall be modified only when SETTINGS[ENA] = 0.

2.14.5 Bus monitoring mode

In Bus monitoring mode, CTU CAN FD does not transmit any frames, it only receives CAN frames. If SW inserted CAN
frame to a TXT buffer and issued Set ready, CTU CAN FD will not transmitt the frame, and TXT buffer will immediately
move to “TX failed” state. In Bus monitoring mode, CTU CAN FD does not transmit any dominant bit to the bus. If
dominant bit is about to be transmitted to the bus (e.g. ACK or error frame), it is re-routed internally so that CTU CAN
FD receives this bit, but other nodes on CAN bus do not see this dominant bit. To enable Bus monitoring mode, SW
shall write MODE[BMM] = 1. SW shall modify MODE[BMM] only when CTU CAN FD is disabled (SETTINGS[ENA]
= 0).

2.14.6 Restricted operation mode

In Restricted operation mode, CTU CAN FD is able to receive frames on CAN bus, but it does not transmit any frames.
If SW inserts CAN frame to a TXT buffer and issyes Set ready command, CTU CAN FD will not transmitt the frame,
and TXT buffer will immediately move to “TX failed” state. In Restricted operation mode, CTU CAN FD gives ACK
to valid frames, but it does not send Error frames nor Overload frames. If CTU CAN FD detects Error or Overload
condition, it enters bus integration state, and waits until it monitors 11 consecutive recessive bits on the bus. CTU CAN
FD does not modify REC and TEC counters in Restricted operation mode, therefore CTU CAN FD will always stay Error
active. SW can enable Restricted operation mode by setting MODE[ROM] = 1. SW shall modify MODE[ROM] only
when CTU CAN FD is disabled (SETTINGS[ENA] = 0).

2.14.7 Test mode
To enable a Test mode, SW shall write MODE[TSTM] = 1. In Test mode, CTU CAN FD has the following features:

e ERP register is writable, therefore threshold for transition from error-active to error-passive state is configurable.

e EWL register is writable, therefore threshold for generating Error warning limit interrupt (INT[EWLI]) is config-
urable.

e CTR_PRES register is writable, therefore all error counters can be modified by SW driver.

e CTU CAN FD corrupts transmitted CAN frame baesd on FRAME _TEST W value from TXT buffer.

Note Test mode shall be used for debugging / development purpose only (e.g. testing of higher layers behavior during
error-passive state). SW shall not use Test Mode during regular operation of CTU CAN FD.

32

st:(;gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

2.15 Corrupting transmitted CAN frames

CTU CAN FD provides following means for corrupting/modifying transmitted CAN frame:

e Invert a bit of CRC field.
e Invert a bit of Stuff count field or Stuff Parity field.

e Replace DLC with arbitrary value.

All features for corrupting transmitted CAN frames are configured per each transmitted frame in FRAME TEST W
memory word in TXT Buffer, details are explained in following subsections. These features are available only in Test
mode (MODE[TSTM]=1). If MODE[TSTM]=0, CTU CAN FD ignores this configuration, and transmitts uncorrupted
frames. If CTU CAN FD is a receiver of a frame, it does not corrupt the frame. Therefore CTU CAN FD does not
corrupt frames transmitted by other CAN nodes on the network.

Note Corrupting a bit, or replacing a bit field with alternative value applies before bit-stuffing, therefore effect of flipping
the bit may alternate length of the frame due to additional/removed stuff bit.

Note To repeat transmission of a frame multiple times with corrupted bit, use standard “Retransmit limitation” mecha-
nism, reffer to 2.2.

Note FRAME_TEST_W word of CAN frame is present only in TXT Buffers, it does not exist in RX buffer (longest
CAN frame in RX buffer still has 20 words, not 21).
2.15.1 Flip a bit of CRC field

When FRAME _TEST_ WI[FCRC] = 1, CTU CAN FD transmitts inverted bit at CRC field bit position given by
FRAME TEST WI[TPRM]. E.g. :

e FRAME_TEST_ W][TPRM] = 0x0 -> Bit at position 0 in CRC field (first bit of CRC field) is transmitted with
opposite value.

e FRAME_TEST W][TPRM] = OxE -> Bit at position 14 in CRC field (15-th bit of CRC filed) is transmitted with
opposite value.

Note If FRAME TEST_WI[FIND] is bigger than length of CRC field, no bit is flipped.

2.15.2 Flip a bit of Stuff count field

When FRAME_TEST_WI[FSTC] = 1, CTU CAN FD transmitts inverted bit at Stuf count field bit position given by
FRAME_TEST_ W[TPRM]. Eg. :

e FRAME_FORMAT _W[TPRM] = 0x0 -> First bit of Stuff count field is transmitted with opposite value.
e FRAME_FORMAT _W[TPRM] = 0x2 -> Third bit of Stuff count field is transmitted with opposite value.

e FRAME_FORMAT _W[TPRM] = 0x3 -> Stuff Parity bit is transmitted with opposite value.

33

st:(;gg CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/i:f Version 2.7.0, Commit:5d16182, 2026-02-01

2.15.3 Replace DLC with arbitrary value

When FRAME _TEST _WISDLC] =1, CTU CAN FD transmitts FRAME _TEST _W[CPRM][3:0] bits instead of
FRAME TEST_ WIDLC] in Data Length Code field of CAN frame. Number of data bytes transmitted is still derived
from FRAME _TEST WI[DLC(] field.

Note CRC transmitted is calculated from FRAME_TEST W[TPRM] (swapped value).

2.16 Other features

2.16.1 Error code capture

An Error code capture register stores type, and position of last error on CAN bus which caused transmission of an error
frame. CTU CAN FD updates Error code capture in sample point of a bit where it detected the error. SW can read Error
code capture from ERR_CAPT. CAN FD standard does not define types of errors as mutually exclusive. For example, a
bit error and stuff error may occur at the same time when transmitted stuff bit value is corrupted to opposite value. In
such case, Error code capture stores only one type of error with highest priority. Priorities of error types are defined as
(Form error having the highest priority):

Priority 1 2 3 4 5
Error type | Form error | Bit error | CRC error | ACK error | Stuff error

Note CTU CAN FD reports Stuff error which occured during fixed bit stuffing method of CAN FD frame as Form error
in Error code capture register.

Note There is an exception to above mentioned error priority order. If CTU CAN FD sends dominant stuff bit during
arbitration field, and samples recessive value, then Error code capture register stores Stuff error, not Bit error.

2.16.2 Arbitration lost capture

Arbitration lost capture register (ALC) stores bit position within CAN arbitration field where CTU CAN FD last time lost
arbitration.

2.16.3 Traffic counters

CTU CAN FD can measure number of CAN frames transmitted/received on CAN bus. Upon every succesfully trans-
mitted CAN frame, CTU CAN FD increments TX COUNTER register by 1. Upon every successfully received CAN
frame, CTU CAN FD increments RX COUNTER register by 1. To clear the TX COUNTER register, SW shall write
COMMAND[TXFCRST]=1. To clear the RX COUNTER register, SW shall write COMMAND[RXFCRST]=1. When
CTU CAN FD is in Loopback mode, and it stores own transmitted frame to RX buffer, CTU CAN FD also increments
RX_COUNTER. Traffic counters are optional in CTU CAN FD. To check if traffic counters are available, SW shall read
STATUS[STCNT] bit.

2.16.4 Debug register

CTU CAN FD contains a debug register (DEBUG _REGISTER) that directly reflects part/field of CAN frame which is
currently being transmitted / received.

34

qi.ag CTU CAN FD IP Core - Datasheet 2. FUNCTIONAL DESCRIPTION
/KY Version 2.7.0, Commit:5d16182, 2026-02-01

2.16.5 Memory testability

CTU CAN FD supports manufacturing testability of its internal memories (TXT buffer RAMs and RX buffer RAM) via
Test Registers memory region. For details on memory testing reffer to [1].

35

3. CAN FD Core memory map

CTU CAN FD is 32 bit peripheria with support of 8, 16 or 32 bit access. Unaligned access is not supported. Byte or
half word access is supported. The memory is organized as Big endian. Write to read only memory location will have no
effect. Read from write only memory location can return undefined values. The memory map of CTU CAN FD consists
of following memory regions:

Memory region Address offset

Control registers 0x000
TXT Buffer 1 0x100
TXT Buffer 2 0x200
TXT Buffer 3 0x300
TXT Buffer 4 0x400
TXT Buffer 5 0x500
TXT Buffer 6 0x600
TXT Buffer 7 0x700
TXT Buffer 8 0x800
Test registers 0x900

36

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

f

3. CAN FD CORE MEMORY MAP

3.1 Control registers

Control registers memory region.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset
VERSION DEVICE_ID 0x0
SETTINGS MODE Ox4
STATUS 0x8
COMMAND 0xC
Reserved INT _STAT 0x10
Reserved INT_ENA_SET 0x14
Reserved INT_ENA CLR 0x18
Reserved INT MASK_ SET 0x1C
Reserved INT_MASK CLR 0x20
BTR 0x24
BTR_FD 0x28
FAULT _STATE ERP | EWL 0x2C
TEC REC 0x30
ERR_FD ERR_NORM 0x34
CTR_PRES 0x38
FILTER_A_MASK 0x3C
FILTER_A_VAL 0x40
FILTER_B_MASK 0x44
FILTER_B_VAL 0x48
FILTER_C_MASK 0x4C
FILTER_C_VAL 0x50
FILTER_RAN_LOW 0x54
FILTER_RAN_HIGH 0x58
FILTER_STATUS | FILTER_CONTROL 0x5C
RX_MEM_INFO 0x60
RX_POINTERS 0x64
Reserved | RX_SETTINGS | RX_STATUS 0x68
RX_DATA 0x6C
TX_STATUS 0x70
TXTB_INFO | TX_COMMAND 0x74
TX_PRIORITY 0x78
TS_INFO | ALC RETR_CTR | ERR_CAPT 0x7C
SSP_CFG TRV_DELAY 0x80
RX_FR_CTR 0x84
TX_FR_CTR 0x88
DEBUG_REGISTER 0x8C
YOLO _REG 0x90
TIMESTAMP_LOW 0x94
TIMESTAMP _HIGH 0x98

37

/a CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

‘ Reserved

3.1.1 DEVICE ID

Type: read-only
Offset: 0x0

Size: 2 bytes

Identifer of CTU CAN FD. Can be used to check if CTU CAN FD is accessible correctly on its base address.

Bit index 5 | 14 | 13 | 12 | 1 | 10 [9 | 8
DEVICE _ID[15:§]

1 | 1+ [o | o [1 | o | 1 | o0

Bit index 7 | e | 5 | a4 | 3 | 2 [1] o
DEVICE _ID[7:0]

1 | 1 [v | 1 | 1 | 1 | o [1

DEVICE _ID Device ID
0b1100101011111101 - CTU_CAN_FD _ID - Identifier of CTU CAN FD.

3.1.2 VERSION
Type: read-only
Offset: 0x2

Size: 2 bytes

Version register. Returns version of CTU CAN FD.

Bit index 5 | w4 | 13 | 12 [w1 | 10 | 9 | 8
VER_MAJOR

x | x | x | x | x | x | X | X

Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
VER_MINOR

x | x | x | x | x | x | X | X

VER _MINOR Minor part of CTU CAN FD version. E.g for version 2.1 this field has value 0x01.
VER_MAJOR Minor part of CTU CAN FD version. E.g for version 2.1 this field has value 0x02.

38

st%g CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/rf Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.3 MODE

Type: read-write

Offset: Ox4
Size: 2 bytes
Bit index 15 | 14 | 13 12 11 10 9 8
Reserved ERFM SAM | TXBBM | RXBAM | TSTM
- - - X 0 0 1 0
Bit index 7 6 5 4 3 2 1 0
ACF ROM TTTM FDE AFM STM BMM RST
0 0 0 1 0 0 0 0

RST Soft reset. Writing logic 1 resets CTU CAN FD. After writing logic 1, logic 0 does not need to be written, this bit
is automatically cleared.

BMM Bus monitoring mode. In this mode CTU CAN FD only receives frames and sends only recessive bits on CAN
bus. When a dominant bit is sent, it is re-routed internally so that bus value is not changed. When this mode is
enabled, CTU CAN FD will not transmit any frame from TXT Buffers,
0b0 - BMM _DISABLED - Bus monitoring mode disabled.

Obl - BMM_ENABLED - Bus monitoring mode enabled.

STM Self Test Mode. In this mode transmitted frame is considered valid even if dominant acknowledge was not received.
0b0 - STM_DISABLED - Self test mode disabled.
Obl - STM_ENABLED - Self test mode enabled.

AFM Acceptance Filters Mode. If enabled, only RX frames which pass Frame filters are stored in RX buffer. If disabled,
every received frame is stored to RX buffer. This bit has meaning only if there is at least one filter available.
Otherwise, this bit is reserved.
0b0 - AFM_ DISABLED - Acceptance filter mode disabled
Obl - AFM_ENABLED - Acceptance filter mode enabled

FDE Flexible data rate enable. When flexible data rate is enabled CTU CAN FD recognizes CAN FD frames (FDF bit
=1).
0b0 - FDE _DISABLE - Flexible data-rate support disabled.
Obl - FDE_ENABLE - Flexible data-rate support enabled.

TTTM Time triggered transmission mode.
O0b0 - TTTM_DISABLED - Time Triggerer transmission is disabled. A frame from highest priority TXT Buffer in
Ready state is admitted for transmission regardless of its timestamp.
Obl - TTTM_ENABLED - Time Triggerer transmission is enabled. A frame from highest priority TXT Buffer in
Ready state is admitted for transmission when its timestamp lower than CTU CAN FD timebase.

ROM Restricted operation mode.
0b0 - ROM _DISABLED - Restricted operation mode is disabled.
Obl - ROM _ENABLED - Restricted operation mode is enabled.

39

s%;("z;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

ACF Acknowledge Forbidden Mode. When enabled, acknowledge is not sent even if received CRC matches the calculated
one.
0b0 - ACF_DISABLED - Acknowledge forbidden mode disabled.
0bl - ACF_ENABLED - Acknowledge forbidden mode enabled.

TSTM Test Mode. In test mode several registers have special features. Reffer to description of Test mode for further
details.

RXBAM RX Buffer Automatic mode.
0b0 - RXBAM _ DISABLED - RX Buffer Automatic mode Disabled.
Obl - RXBAM _ENABLED - RX Buffer Automatic mode Enabled.

TXBBM TXT Buffer Backup mode.
0b0 - TXBBM _DISABLED - TXT Buffer Backup mode disabled.
0bl - TXBBM _ENABLED - TXT Buffer Backup mode enabled.

SAM Self-acknowledge mode.
0b0 - SAM _DISABLE - Do not send dominant ACK bit when CTU CAN FD sends Acknowledge bit.
Obl - SAM_ENABLE - Send dominant ACK bit when CTU CAN FD transmits CAN frame.

ERFM Error Frame Receive mode. When set, CTU CAN FD receives Error frames on CAN bus into its RX buffer.
0b0 - ERFM _DISABLED - Error frames are not stored to RX Buffer.
Obl - ERFM_ENABLED - Error frames are stored to RX buffer.

3.1.4 SETTINGS

Type: read-write

Offset: 0x6
Size: 2 bytes
Bit index 15 \ 14 \ 13 \ 12 11 10 9 8
Reserved PCHKE FDRF TBFBO PEX
- -1 -1 - X 0 1 0
Bit index 7 6 5 4 | 3 | 2 | 1 0
NISOFD ENA ILBP RTRTH RTRLE
0 0 0 o | o | o [o 0

RTRLE Retransmitt Limit Enable. If enabled, CTU CAN FD only attempts to retransmitt each frame up to RTR_TH
times.
0b0 - RTRLE _DISABLED - Retransmitt limit is disabled.
Obl - RTRLE_ENABLED - Retransmitt limit is enabled.

RTRTH Retransmitt Limit Threshold. Maximal amount of retransmission attempts when SETTINGS[RTRLE] is en-
abled.

40

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

3. CAN FD CORE MEMORY MAP

R

ILBP Internal Loop Back mode. When enabled, CTU CAN FD receives any frame it transmitts.
0b0 - INT _LOOP _DISABLED - Internal loop-back is disabled.
Obl - INT _LOOP _ENABLED - Internal loop-back is enabled.

ENA Main enable bit of CTU CAN FD. When enabled, CTU CAN FD communicates on CAN bus. When disabled, it
is bus-off and does not take part of CAN bus communication.
0b0 - CTU_CAN_DISABLED - The CAN Core is disabled.
Obl - CTU_CAN_ENABLED - The CAN Core is enabled.

NISOFD Non ISO FD. When this bit is set, CTU CAN FD is compliant to NON-ISO CAN FD specification (no stuff
count field). This bit should be modified only when SET TINGS[ENA]=0.
0b0 - ISO_FD - The CAN Controller conforms to ISO CAN FD specification.
0bl - NON_ISO_FD - The CAN Controller conforms to NON ISO CAN FD specification.

PEX Protocol exception handling. When this bit is set, CTU CAN FD will start integration upon detection of protocol
exception. This should be modified only when SETTINGS[ENA] = "0'.
0b0 - PROTOCOL EXCEPTION _DISABLED - Protocol exception handling is disabled.
Obl - PROTOCOL EXCEPTION ENABLED - Protocol exception handling is enabled.

TBFBO All TXT buffers shall go to "TX failed" state when CTU CAN FD becomes bus-off.
0b0 - TXTBUF _FAILED BUS OFF DISABLED - TXT Buffers dont go to "TX failed" state when CTU CAN
FD becomes bus-off.
Obl - TXTBUF FAILED BUS OFF ENABLED - TXT Buffers go to "TX failed" state when CTU CAN FD
becomes bus-off.

FDRF Frame filters drop Remote frames.
0b0 - DROP_RF _DISABLED - Frame filters accept RTR frames.
Obl - DROP_RF_ENABLED - Frame filters drop RTR frames.

PCHKE Enable Parity checks in TXT Buffers and RX Buffer.

3.1.5 STATUS

Type: read-only

Offset: 0x8
Size: 4 bytes
Bit index 31 \ 30 \ 29 \ 28 \ 27 \ 26 \ 25 \ 24
Reserved
— 1 - 1 - 1 - 1 - [- T - T -
Bit index 23 22 \ 21 20 \ 19 18 17 16
Reserved SPRT STRGS STCNT
_ _ \ _ _ \ - X X X
Bit index 15 14 | 13 12 11 10 9 8
Reserved TXDPE TXPE RXPE PEXS
- - 1 - - 0 0 0 0

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

3. CAN FD CORE MEMORY MAP

R

Bit index 7 6 5 4 3 2 1 0
IDLE EWL TXS RXS EFT TXNF DOR RXNE
1 0 0 0 0 1 0 0

RXNE RX buffer not empty. This bit is 1 when least one frame is stored in RX buffer.

DOR Data Overrun flag. This bit is set when frame was dropped due to lack of space in RX buffer. This bit can be
cleared by COMMANDI[RRB] or COMMANDI[CDO].

TXNF TXT buffers status. This bit is set if at least one TXT buffer is in "Empty" state.

EFT Error frame is being transmitted at the moment.

RXS CTU CAN FD is receiver of CAN Frame.

TXS CTU CAN FD is transmitter of CAN Frame.

EWL TX Error counter (TEC) or RX Error counter (REC) is equal to, or higher than Error warning limit (EWL).
IDLE Bus is idle (no frame is being transmitted/received) or CTU CAN FD is bus-off.

PEXS Protocol exception status (flag). Set when Protocol exception occurs. Cleared by writing COMMAND[CPEXS]=1.
RXPE Set when parity error is detected during read of CAN frame from RX Buffer via RX DATA register.

TXPE TXT Buffers Parity Error flag. Set When Parity Error is detected in a TXT Buffer during transmission from this
buffer.

TXDPE TXT Buffer double parity error. Set in TXT Buffer Backup mode when parity error is detected in "backup"
TXT Buffer.

STCNT Support of Traffic counters. When this bit is 1, Traffic counters are present.
STRGS Support of Test Registers for memory testability. When this bit is 1, Test Registers are present.

SPRT Support of Parity protection on each word of TXT Buffer RAM and RX Buffer RAM.

3.1.6 COMMAND
Type: write-only
Offset: 0xC

Size: 4 bytes

Allows issuing commands to CTU CAN FD. Writing logic 1 to each bit gives a command to CTU CAN FD. After writing
logic 1, logic 0 does not need to be written.

Bit index

31

|

30

|

29

28 |

27

26

25

24

Reserved

|

|

42

f

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

3. CAN FD CORE MEMORY MAP

Bit index 22 21 20 19 18 17 16
Reserved
Bit index 14 13 12 11 10 9 8
Reserved CTXDPE | CTXPE CRXPE
- - - - 0 0 0
Bit index 6 5 4 3 2 1 0
TXFCRST | RXFCRST | ERCRST CDO RRB RXRPMV | Reserved
0 0 0 0 0 X -

RXRPMYV RX Buffer read pointer move.

RRB Release RX Buffer. This command flushes RX buffer and resets its memory pointers.

CDO Clear Data Overrun flag in RX buffer.

ERCRST Error Counters Reset. When unit is bus off, issuing this command will request erasing TEC, REC counters after
128 consecutive ocurrences of 11 recessive bits. Upon completion, TEC and REC are erased and fault confinement
state is set to error-active. When unit is not bus-off, or when unit is bus-off due to being disabled (SETTINGS[ENA]

="0"), this command has no effect.
RXFCRST Clear RX bus traffic counter (RX COUNTER register).

TXFCRST Clear TX bus traffic counter (TX COUNTER register).

CPEXS Clear Protocol exception status (STATUS[PEXS]).

CRXPE Clear STATUS[RXPE] flag.

CTXPE Clear STATUS[TXPE] flag.

CTXDPE Clear STATUS[TXDPE] flag.

3.1.7

Type: read-writeOnce

Offset: 0x10

Size: 2 bytes

INT _STAT

Interrupt Status register. Reading this register returns logic 1 for each interrupt which ocurred. Writing logic 1 to any

bit clears according interrupt status. Writing logic 0 has no effect.

Bit index

14 13 12 11 10 9 8
Reserved TXBHCI RBNEI BSI RXFI
- - - 0 0 0 0

43

s%%g CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 7 6 5 4 3 2 1 0
OFI BEI ALl FCSI DOl EWLI TXI RXI
0 0 0 0 0 0 0 0

RXI Frame received interrupt.
TXI Frame transmitted interrupt.

EWLI Error warning limit interrupt. When both TEC and REC are lower than EWL and one of the becomes equal to or
higher than EWL, or when both TEC and REC become less than EWL, this interrupt is generated. When Interrupt
is cleared and REC, or TEC is still equal to or higher than EWL, Interrupt is not generated again.

DOI Data overrun interrupt. Before this interrupt is cleared , STATUS[DOR] must be cleared to avoid setting of this
interrupt again.

FCSI Fault confinement state changed interrupt. Interrupt is set when node turns error-passive (from error-active),
bus-off (from error-passive) or error-active (from bus-off after reintegration or from error-passive).

ALl Arbitration lost interrupt.
BEI Bus error interrupt.

OFI Overload frame interrupt.
RXFI RX buffer full interrupt.
BSI Bit rate shifted interrupt.

RBNEI RX buffer not empty interrupt. Clearing this interrupt and not reading out content of RX Buffer via RX DATA
will re-activate the interrupt.

TXBHCI TXT buffer HW command interrupt. Anytime TXT buffer receives HW command from CAN Core which
changes TXT buffer state to "TX OK", "Error" or "Aborted", this interrupt will be generated.

3.1.8 INT_ENA_SET
Type: read-writeOnce
Offset: 0x14

Size: 2 bytes

Interrupt Enable Set. Writing logic 1 to a bit enables according interrupt. Writing logic 0 has no effect. Reading this
register returns logic 1 for each enabled interrupt. If interrupt is captured in INT _STAT, enabled interrupt will cause
CTU CAN FD to raise interrupt. Interrupts are level-based, it remains active until Interrupt status is cleared or interrupt
is disabled.

Bit index 15 | 14 | 13 | 12 m [1w | 9 | 8
Reserved INT _ENA SET[11:§]
- - 1 - 1 - o [o [o [o0

44

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

f

3. CAN FD CORE MEMORY MAP

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
INT_ENA_SET[7:0]
o | o | o [o [o | o [o [o

INT_ENA_SET Bit meaning is equivalent to register INT _STAT.

3.1.9 INT_ENA_ CLR

Type: write-only
Offset: 0x18

Size: 2 bytes

Interrupt Enable Clear register. Writing logic 1 disables according interrupt. Writing logic 0 has no effect. Reading this
register has no effect. Disabled interrupt wil not cause interrupt to be raised by CTU CAN FD even if it is set in Interrupt

status register.

Bit index 15 | 14 | 13 | 12 m [w00 | 9 | 8
Reserved INT _ENA_CLRJ11:8]
- - [- [- 0o [o | o | o
Bit index 7 | 6 | 5 | 4 3 | 2 | 1 | o
INT_ENA_CLR[7:0]
o | o | o [o [o | o | o | o0

INT_ENA_CLR Bit meaning is equivalent to register INT _STAT.

3.1.10 INT_MASK_SET

Type: read-writeOnce
Offset: 0x1C

Size: 2 bytes

Interrupt Mask set. Writing logic 1 masks according interrupt. Writing logic 0 has no effect. Reading this register returns
logic 1 for each masked interrupt. If particular interrupt is masked, it won't be captured in INT STAT register when
internal conditions for this interrupt are met (e.g RX buffer is not empty for RXNEI).

Bit index 15 | 14 | 13 | 12 m [w00 | 9 | 8
Reserved INT _MASK SET[11:8]
- - [- [- o [o | o | o
Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
INT_MASK_SET[7:0]
o | o | o [o [o | o | o | o

INT_MASK _SET Bit meaning is equivalent to register INT _STAT.

45

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

f&

3. CAN FD CORE MEMORY MAP

3.1.11 INT_MASK_ CLR

Type: write-only
Offset: 0x20

Size: 2 bytes

Interrupt Mask clear register. Writing logic 1 un-masks according interrupt. Writing logic 0 has no effect. Reading
this register has no effect. If particular interrupt is un-masked, it will be captured in INT STAT register when internal

conditions for this interrupt are met (e.g RX buffer is not empty for RXNEI).

Bit index 15 | 14 | 13 | 12 m [w00 | 9 | 8
Reserved INT _MASK _ CLR[11:8]
S I R 0] o][o [0
Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
INT_MASK_ CLR[7:0]
o | o | o | o [o | o | o [o

INT MASK CLR Bit meaning is equivalent to register INT _STAT.

3.1.12 BTR
Type: read-write
Offset: 0x24

Size: 4 bytes

Note: Register can be only written when SETTINGS[ENA] = 0, otherwise write has no effect.

Bit timing register for nominal bit rate.

Bit index 31 | 30 | 20 | 28 | 27 26 | 25 | 24
SJw BRP[7:5]

0 o | o | 1 | o o | o | o

Bit index 23 2 | 21 | 20 | 19 18 | 17 | 16
BRP[4:0] PH2[5:3]

0 1 | o | 1 | o o | o | o

Bit index 15 14 | 13 2 | 1um | 10 | 9 | 8

PH2[2:0] PH1[5:1]
1 o | 1 o | o | o | o [1
Bit index 7 6 | 5 | 4 | 3 | 2 | 1 | 0
PH1[0] PROP
1 o | o | o | o | 1 | o | 1

/a CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

PROP Propagation segment
PH1 Phase 1 segment
PH2 Phase 2 segment
BRP Bit rate prescaler

SJW Synchronisation jump width

3.1.13 BTR_FD
Type: read-write
Offset: 0x28

Size: 4 bytes

Note: Register can be only written when SETTINGS[ENA] = 0, otherwise write has no effect.

Bit timing register for data bit rate.

Bit index 31 | 30 | 20 | 28 | 21 26 | 25 | 24
SJW_FD BRP_FDI[7:5]
o | o | o | 1 | o o | o | o
Bit index 23 | 22 | 21 | 20 [19 18 17 | 16
BRP_FD[4:0] Reserved PH2 FD[4:3]
o | o | 1 | o | o - o | o
Bit index | 1 | 13 12 m | 10 | 9 | 8
PH2_FD[2:0] Reserved PH1 FDI[4:1]
1 | 1 - o | o | o | 1
Bit index 6 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 | 0
PH 1 _FDI[0] | Reserved PROP_FD
- o | o | o | o | 1 | 1

PROP _FD Propagation segment

PH1 FD Phase 1 segment
PH2 FD Phase 2 segment
BRP _FD Bit rate prescaler

SJW_FD Synchronisation jump width

47

s%?;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.14 EWL
Type: read-write
Offset: 0x2C
Size: 1 byte

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Error warning limit register. This register shall be modified only when SETTINGS[ENA]=0.

Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
EW_LIMIT
o | 1 | 1 [o [o | o [o [o

EW _LIMIT Error warning limit. If error warning limit is reached interrupt can be generated. Error warning limit
indicates heavily disturbed bus.

3.1.15 ERP
Type: read-write
Offset: 0x2D
Size: 1 byte

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Error passive limit register. This register shall be modified only when SETTINGS[ENA]=0.

Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
ERP_LIMIT
1 | o [o [o | o | o [o | o

ERP _LIMIT Error Passive Limit. When one of error counters (REC/TEC) exceeds this value, Fault confinement state
changes to error-passive.

3.1.16 FAULT _ STATE
Type: read-only
Offset: O0x2E

Size: 2 bytes

Fault Confinement state of the CTU CAN FD.

48

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

3. CAN FD CORE MEMORY MAP

Bit index 15 | 14 13 2 | 1 10 [9 | 8
Reserved
— 1 - : — 1 - — 1 T -
Bit index 7 | 6 5 a4 | 3 2 1 0
Reserved BOF ERP ERA
- | - - - | - 1 0 0
ERA Error-active
ERP Error-passive
BOF Bus-off
3.1.17 REC
Type: read-only
Offset: 0x30
Size: 2 bytes
Bit index 15 | 14 13 12 | 1 0 | 09 8
Reserved REC VAL[8]
- : - - 0
Bit index 7 | 6 5 4 | 3 2 | 1 | o
REC_VAL[7:0]
o | o 0 o | o o | o | o
REC VAL RX error counter (REC).
3.1.18 TEC
Type: read-only
Offset: 0x32
Size: 2 bytes
Bit index 15 | 14 13 2 | 1 0 | 9 8
Reserved TEC VALJ8]
- : - - 0
Bit index 7 | 6 5 4 | 3 2 | 1 | o
TEC_VAL[7:0]
o | o 0 o | o o | o | o

TEC_VAL TX error counter (TEC).

49

/a CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.19 ERR_NORM
Type: read-only
Offset: 0x34

Size: 2 bytes

Bit index 15 | 1w | 13 | 12 | m | 10 | 9 | 8
ERR_NORM_VAL[15:8]

o | o | o | o | o | o | o [o

Bit index 7 | e | s | a4 | 3 | 2 | 1 | o
ERR_NORM_VAL[7:0]

o [o | o | o | o | o | o | o

ERR_NORM _VAL Number of errors which occured in nominal bit rate.

3.1.20 ERR_FD

Type: read-only

Offset: 0x36
Size: 2 bytes
Bit index 15 | 1w | 13 | 12 | m | 10 | 9 | 8
ERR_FD_VAL[15:8]
o | o | o | o | o | o | o [o
Bit index 7 | e | s | a4 | 3 | 2 | 1 | o
ERR_FD_VAL[7:0]
o [o | o | o | o | o | o | o

ERR_FD VAL Number of errors which occured in data bit rate.

3.1.21 CTR_PRES
Type: write-only

Offset: 0x38

Size: 4 bytes

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.
Counter preset register. Error counters can be modified via this register.

50

CTU CAN FD IP Core - Datasheet
5 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 31 | 30 | 29 | 28 | 22 | 26 | 25 | 24
Reserved

S IR IR I B B B N

Bit index 23 | 22 | 21 [20 | 19 | 18 [17 | 16
Reserved

S IR IR I B B B N

Bit index 15 | 14 | 13 12 11 10 9 8

Reserved EFD ENORM PRX PTX | CTPV[g]

- - | - 0 0 0 0 0

Bit index 6 | 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 | 0
CTPV[7:0]

o | o | o | o | o | o | o

CTPV Counter value to set.

3. CAN FD CORE MEMORY MAP

PTX Preset value from CTPV to TX Error counter (TEC).
PRX Preset value from CTPV to RX Error counter (REC).
ENORM Erase Nominal bit rate error counter (ERR_NORM).

EFD Erase Data bit rate error counter (ERR_FD).

3.1.22 FILTER_A MASK
Type: read-write

Offset: 0x3C

Size: 4 bytes

Note: Register is present only when sup _filt A = true. Otherwise this address is reserved.

Bit index 31 | 30 | 29 28 | 27 | 26 | 25 | 24
Reserved BIT _MASK A VAL[28:24]

- - - o [o | o | o0 0

Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 16
BIT_MASK_A_VAL[23:16]

o | o | o | o | o | o | o 0

Bit index 5 | 14 | 13 | 12 | 11 | 10 | 9 8
BIT_MASK_A_VAL[15:8]

o | o | o | o | o | o | o 0

o1

/a CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
BIT_MASK_A_VAL[7:0]
o | o | o | o [o | o | o [o0

BIT MASK A VAL Filter A mask. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.23 FILTER_A VAL
Type: read-write

Offset: 0x40

Size: 4 bytes

Note: Register is present only when sup _filt A = true. Otherwise this address is reserved.

Bit index 31 | 3 | 2 28 | 27 | 26 | 25 [24
Reserved BIT_VAL_A_VAL[28:24]
S I o | o [o | o [o

o

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
BIT_VAL_A_VAL[23:16]

o | o | | o | o | o | o | o0

Bit index 5 | w4 | 13 | 122 [wm | 10 | 9 | 8
BIT_VAL_A_VAL[15:8]

o | o | o | o [o | o | o [o0

Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o

BIT_VAL_A_VAL[7:0]
o | o | o | o [o | o | o [o

BIT _VAL_A VAL Filter A value. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.24 FILTER_B_ MASK
Type: read-write

Offset: 0x44

Size: 4 bytes

Note: Register is present only when sup _filt B = true. Otherwise this address is reserved.

52

CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 31 | 3 | 29 2 | 22 | 26 | 25 | 24
Reserved BIT_MASK_B_VAL[28:24]

- - 1 - o [o [o | o | 0

Bit index 23 | 22 | 21 [20 | 19 | 18 [17 | 16
BIT_MASK_B_VAL[23:16]

o | o | o | o | o | o | o | o

Bit index 5 | 14 | 13 | 12 | 1 | 10 [9 | 8
BIT_MASK_B_VAL[15:8]

o [o | o | o | o | o | o | o

Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
BIT_MASK_B_VAL[7:0]

o | o | o | o | o | o | o | o

BIT _MASK _B_ VAL Filter B mask. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.25 FILTER_B_ VAL
Type: read-write

Offset: 0x48

Size: 4 bytes

Note: Register is present only when sup _filt B = true. Otherwise this address is reserved.

Bit index 31 | 3 | 29 28 | 27 | 26 | 25 | 24
Reserved BIT VAL B _VAL[28:24]

- - 1 - o [o [o | o | 0

Bit index 23 | 22 | 21 [20 | 19 | 18 [17 | 16
BIT_VAL_B_VAL[23:16]

o | o | o | o [o | o | o [o

Bit index 5 | 1w | 13 | 12 | mum | 10 | 9 | 8
BIT_VAL_B_VAL[15:§]

o [o | o | o | o | o | o | o

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
BIT_VAL_B_VAL[7:0]

o [o | o | o | o | o | o | o

BIT_VAL_ B_ VAL Filter B value. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

53

f&

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

3. CAN FD CORE MEMORY MAP

3.1.26 FILTER C_MASK
Type: read-write
Offset: 0x4C

Size: 4 bytes

Note: Register is present only when sup_filt C = true. Otherwise this address is reserved.

Bit index 31 | 30 | 29 2 | 20 | 26 | 25 | 24
Reserved BIT MASK_ C_VAL[28:24]

- - - o | o | o | o | o

Bit index 23 | 22 | 21 [20 | 19 | 18 [17 | 16
BIT_MASK_C_VAL[23:16]

o | o | o | o [o | o | o [o0

Bit index 5 | 14 | 13 | 12 [w1 | 10 | 9 | 8
BIT_MASK_C_VALJ[15:8]

o | o | o | o | o | o | o [o

Bit index 7 | e | 5 | a4 | 3 | 2 [1] o
BIT_MASK_C_VAL[7:0]

o | o | o | o [o | o | o [o

BIT _MASK _C_VAL Filter C mask. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.27 FILTER_C_VAL
Type: read-write
Offset: 0x50

Size: 4 bytes

Note: Register is present only when sup_filt C = true. Otherwise this address is reserved.

Bit index 31 | 3 | 29 28 | 27 | 26 | 25 [24
Reserved BIT VAL C_VAL[28:24]
- - 1 - o [o | o | o [o
Bit index 23 | 22 | 22 [20 | 19 | 18 [17 | 16
BIT_VAL_C_VAL[23:16]
o | o | o | o [o | o | o 0

o4

j. CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
BIT_VAL_C_VAL[15:§]

o | o | o | o [o | o | o [o0

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
BIT_VAL_C_VAL[7:0]

o | o | o | o [o | o | o [o

BIT_VAL_C_VAL Filter C value. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.28 FILTER_RAN LOW
Type: read-write

Offset: 0x54

Size: 4 bytes

Note: Register is present only when sup range = true. Otherwise this address is reserved.

Bit index 31 | 3 | 29 2 | 22 | 26 | 25 | 24
Reserved BIT_RAN_LOW _VAL[28:24]

N I N 0] o [o | o0] o

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
BIT_RAN_LOW _VAL[23:16]

o | o | o | o [o | o | o [o0

Bit index 15 | 1w | 13 | 12 | m | 10 | 9 | 8
BIT_RAN_LOW_VAL[15:8]

o | o | o | o [o | o | o [o

Bit index 7 | e | s | a4 | 3 | 2 | 1 | o

BIT_RAN_LOW _VAL[7:0]
o | o | o | o [o | o | o [o

BIT _RAN_LOW _VAL Filter Range Low threshold. The identifier format is the same as in IDENTIFIER _W of TXT
buffer or RX buffer. If Range filter is not supported, writes to this register have no effect and read will return all
zZeroes.

35

/a CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.29 FILTER _RAN _ HIGH
Type: read-write

Offset: 0x58

Size: 4 bytes

Note: Register is present only when sup range = true. Otherwise this address is reserved.

Bit index 31 | 3 | 2 28 | 27 | 26 | 25 [24
Reserved BIT_RAN_HIGH_VAL[28:24]
S I o | o [o | o [o

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
BIT_RAN_HIGH_VAL[23:16]

o | o | o | o [o | o | o [o0

Bit index 5 | 1w | 13 | 12 | mu | 10 | 9 | 8
BIT_RAN_HIGH_VAL[15:8]

o | o | o | o | o | o | o [o

Bit index 7 | e | 5 | a4 | 3 | 2 | 1 | o

BIT_RAN_HIGH_VAL[7:0]
o | o | o | o [o | o | o [o

BIT _RAN_HIGH VAL Range filter High threshold. The identifier format is the same as in IDENTIFIER_W of TXT
buffer or RX buffer. If Range filter is not supported, writes to this register have no effect and read will return all
zeroes.

3.1.30 FILTER_CONTROL
Type: read-write
Offset: 0x5C

Size: 2 bytes

Filter control register. Configures Frame filters to accept only selected frame types. Every bit is active in logic 1.

Bit index 15 14 13 12 11 10 9 8
FRFE FRFB FRNE FRNB FCFE FCFB FCNE FCNB

0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
FBFE FBFB FBNE FBNB FAFE FAFB FANE FANB

0 0 0 0 1 1 1 1

56

s%.gg* CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

FANB CAN Basic Frame is accepted by filter A.

FANE CAN Extended Frame is accepted by Filter A.
FAFB CAN FD Basic Frame is accepted by filter A.
FAFE CAN FD Extended Frame is accepted by filter A.
FBNB CAN Basic Frame is accepted by filter B.

FBNE CAN Extended Frame is accepted by Filter B.
FBFB CAN FD Basic Frame is accepted by filter B.
FBFE CAN FD Extended Frame is accepted by filter B.
FCNB CAN Basic Frame is accepted by filter C.

FCNE CAN Extended Frame is accepted by Filter C.
FCFB CAN FD Basic Frame is accepted by filter C.
FCFE CAN FD Extended Frame is accepted by filter C.
FRNB CAN Basic Frame is accepted by Range filter.
FRNE CAN Extended Frame is accepted by Range filter.
FRFB CAN FD Basic Frame is accepted by Range filter.
FRFE CAN FD Extended Frame is accepted by Range filter.

3.1.31 FILTER_STATUS

Type: read-only
Offset: Ox5E
Size: 2 bytes

Filter status indicates if frame filters are available in CTU CAN FD.

Bit index 5 | 14 | 13 | 12 | 1 | 10 [9 | 8
Reserved
— 1 - [- T - 1 - T - T - T
Bit index 7 | 6 | 5 | 4 3 2 1 0
Reserved SFR SFC SFB SFA
- \ - \ - \ - X X X X

SFA Logic 1 when Filter A is available. Otherwise logic 0.
SFB Logic 1 when Filter B is available. Otherwise logic 0.
SFC Logic 1 when Filter C is available. Otherwise logic 0.
SFR Logic 1 when Range Filter is available. Otherwise logic 0.

a7

CTU CAN FD IP Core - Datasheet

Version 2.7.0, Commit:5d16182, 2026-02-01

3. CAN FD CORE MEMORY MAP

3.1.32 RX_MEM_INFO

Type: read-only

Offset: 0x60
Size: 4 bytes
Bit index 31 | 3 | 29 28 | 21 | 26 | 25 24
Reserved RX_MEM _FREE[12:8]
- - - x [x [x [X X
Bit index 23 | 2 | 21 | 20 [1 | 18 | 17 16
RX_MEM_ FREE[7:0]
x | x | x | x | x | x | X X
Bit index 15 | 14 | 13 2 | 1 | 10 | 9 8
Reserved RX_BUFF_SIZE[12:8]
S R X [X [X | X X
Bit index 7 | e | 5 | a4 | 3 | 2 | 1 0
RX_BUFF _SIZE[7:0]
x | x | x | x | x | x | X X
RX BUFF _SIZE Size of RX buffer in 32-bit words.
RX MEM _FREE Number of free 32 bit words in RX buffer.
3.1.33 RX_POINTERS
Type: read-only
Offset: 0x64
Size: 4 bytes
Bit index 31 | 3 | 29 | 28 27 | 26 | 25 24
Reserved RX _RPP[11:§]
- - r - 1 - o | o | o 0
Bit index 23 | 22 | 22 [20 | 19 | 18 [17 16
RX_RPP[7:0]
o | o | o | o [o | o | o 0
Bit index 15 [14 | 13 | 12 m | 10 | 9 8
Reserved RX WPP[11:§]
- - - [- o [o [o 0

58

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

3. CAN FD CORE MEMORY MAP

f

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
RX_WPPI[7:0]
o | o | o [o [o | o [o [o

RX_WPP Write pointer position in RX buffer. Upon store of received frame write pointer is updated.

RX_RPP Read pointer position in RX buffer. Upon read of received frame read pointer is updated.

3.1.34 RX_STATUS

Type: read-only

Offset: 0x68
Size: 2 bytes
Bit index 15 4 | 13 [12 | 1 | 10 9 8
Reserved RXFRC[10:4]
- o | o | o [o | o 0 0
Bit index 7 6 | 5 | 4 3 2 1 0
RXFRC[3:0] Reserved | RXMOF RXF RXE
0 o | o | o - 0 0 1

RXE RX buffer is empty. There is no CAN Frame stored in it.

RXF RX buffer is full, all memory words of RX buffer are occupied.

RXMOF RX Buffer middle of frame. When RXMOF = 1, next read from RX DATA register will return other than first

word (FRAME_FORMAT _ W) of CAN frame.

RXFRC RX buffer frame count. Number of CAN frames stored in RX buffer.

3.1.35 RX _SETTINGS

Type: read-write

Offset: 0x6A
Size: 1 byte

Settings of RX buffer FIFO.

Bit index 7 6 | 5 | a4 | 3 | 2 1 0
Reserved RTSOP
: — T - T - T - T - o

RTSOP Receive buffer timestamp option. This register should be modified only when SETTINGS[ENA]=0.

0b0 - RTS END - Timestamp of received frame in RX FIFO is captured in last bit of EOF field.
Obl - RTS BEG - Timestamp of received frame in RX FIFO is captured in SOF field.

99

CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.36 RX _ DATA

Type: read-only
Offset: 0x6C

Size: 4 bytes

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [=24
RX_DATA[31:24]

o | o | o | o [o

Bit index 23 | 2 | 21 | 20 | 19 | 18 | 17 | 16
RX_DATA[23:16]

o | o | o | o [o | o | o [o0

Bit index 5 | 1w | 13 | 12 | m | 10 | 9 | 8
RX_DATA[15:§]

o | o | o | o [o | o | o [o0

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o

RX_DATA[7:0]

o | o | o | o [o | o | o [o0

RX DATA RX buffer data at read pointer position in FIFO. By reading from this register, read pointer is automatically

incremented if MODES[RXBAM]=1 and RX Buffer is not empty. If MODE[RXBAM]=1, this register must be read

by 32 bit access. Upon read from this register, STATUS[RXPE] is set if there is parity error detected in RX Buffer
word which is being read.

o
o
o

3.1.37 TX_STATUS
Type: read-only
Offset: 0x70

Size: 4 bytes

Bit index 31 | 3 | 29 | 28 27 | 26 | 25 | 24

Bit index 23 | 2 | 22 | 20 19 | 18 | 17 | 16

Bit index 15 | 14 | 13 | 12 m [w00 | 9 | 8

—
o
—
X
(o))
(0]
o
o
—
o
—
X
ol
(0]
o
o

60

s%;("z;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

Bitindex | 7 | 6 | 5 | 4 3 | 2 | 1] o

TX1S Status of TXT buffer 1.
0b0000 - TXT _NOT _EXIST - TXT buffer does not exist in the core (applies only to TXT buffers 3-8, when CTU
CAN FD was synthesized with less than 8 TXT buffers).
0b0001 - TXT _RDY - TXT buffer is in "Ready" state, it is waiting for CTU CAN FD to start transmission from
It.
0b0010 - TXT _TRAN - TXT buffer is in "TX in progress" state. CTU CAN FD is transmitting frame.
0b0011 - TXT _ABTP - TXT buffer is in "Abort in progress" state.
0b0100 - TXT_TOK - TXT buffer is in "TX OK" state.
0b0110 - TXT_ERR - TXT buffer is in "Failed" state.
0b0111 - TXT_ABT - TXT buffer is in "Aborted" state.
0b1000 - TXT _ETY - TXT buffer is in "Empty" state.
0b1001 - TXT _PER - TXT Buffer is in "Parity Error" state. CTU CAN FD detected parity error on this buffer.

TX2S Status of TXT buffer 2. Bit field meaning is analogous to TX1S.
TX3S Status of TXT buffer 3. Bit field meaning is analogous to TX1S.
TXA4S Status of TXT buffer 4. Bit field meaning is analogous to TX1S.
TX5S Status of TXT buffer 5. Bit field meaning is analogous to TX1S.
TX6S Status of TXT buffer 6. Bit field meaning is analogous to TX1S.
TX7S Status of TXT buffer 7. Bit field meaning is analogous to TX1S.

TX8S Status of TXT buffer 8. Bit field meaning is analogous to TX1S.

3.1.38 TX COMMAND
Type: write-only
Offset: 0x74

Size: 2 bytes

Command register for TXT buffers. Command is activated by writing logic 1 to TXC(E|R|A) bit. TXT buffer that receives
the command is selected by setting bit TXB[1-8] to logic 1. Command and index can be set by single access, or index can
be set in advance. TXC(E|R|A) bits are automatically erased upon the command completion. Reffer to description of
TXT buffer for meaning of commands. If TXCE and TXCR are applied simultaneously, only TXCE command is applied.
If multiple commands are applied at once, only those which have effect in immediate state of TXT buffer are applied to
the buffer.

Bit index 15 14 13 12 11 10 9 8
TXB8 TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1
0 0 0 0 0 0 0 0

61

s%;?//* CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 7 | e | 5 | 4] 3 2 1 0
Reserved TXCA TXCR TXCE
S B B N B o R

TXCE Issues "set empty" command.
TXCR lIssues "set ready" command.
TXCA Issues "set abort" command.
TXB1 Command is issued to TXT Buffer 1.
TXB2 Command is issued to TXT Buffer 2.

TXB3 Command is issued to TXT Buffer 3. If number of TXT Buffers is less than 3, this field is reserved and has no
function.

TXB4 Command is issued to TXT Buffer 4. If number of TXT Buffers is less than 4, this field is reserved and has no
function.

TXB5 Command is issued to TXT Buffer 5. If number of TXT Buffers is less than 5, this field is reserved and has no
function.

TXB6 Command is issued to TXT Buffer 6. If number of TXT Buffers is less than 6, this field is reserved and has no
function.

TXB7 Command is issued to TXT Buffer 7. If number of TXT Buffers is less than 7, this field is reserved and has no
function.

TXB8 Command is issued to TXT Buffer 8. If number of TXT Buffers is less than 8, this field is reserved and has no
function.

3.1.39 TXTB _INFO

Type: read-only
Offset: 0x76

Size: 2 bytes

Register with information about supported features of TXT buffers.

Bit index 5 | 1w | 13 | 12 | m | 10 | 9 | 8
Reserved
S I R N S NS B N
Bit index 7 | 6 | 5 | 4 3 | 2 | 1 | o
Reserved TXT_BUFFER_COUNT
- 1 - [- X [X] x] X

TXT_BUFFER_COUNT Number of TXT buffers present in CTU CAN FD. Lowest buffer is always 1. Highest buffer
is at index equal to number of present buffers.

62

%’.@ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.40 TX_ PRIORITY
Type: read-write
Offset: 0x78

Size: 4 bytes

Priority of TXT buffers. Highest priority TXT buffer in "Ready" state is selected for transmission.

Bit index 31 30 | 20 | 28 27 26 | 25 | 24
Reserved TXT8P Reserved TXT7P
- o | o | o - o | o | o

Bit index 23 2 | 21 | 2 19 18 | 17 | 16
Reserved TXT6P Reserved TXTS5P

- o | o | o - o | o | o

Bit index 15 4 | 13 | 12 11 0 [9 | 8
Reserved TXT4P Reserved TXT3P

i o | 0o | o0 - o [o [o

Bit index 7 6 | 5 | 4 3 2 | 1 | o
Reserved TXT2P Reserved TXT1P

- o | o | o - o [o | 1

TXT1P Priority of TXT buffer 1.

TXT2P Priority of TXT buffer 2.

TXT3P Priority of TXT buffer 3. If number of TXT Buffers is less than 3, this field is reserved and has no function.
TXTA4P Priority of TXT buffer 4. If number of TXT Buffers is less than 4, this field is reserved and has no function.
TXTS5P Priority of TXT buffer 5. If number of TXT Buffers is less than 5, this field is reserved and has no function.
TXTO6P Priority of TXT buffer 6. If number of TXT Buffers is less than 6, this field is reserved and has no function.
TXTT7P Priority of TXT buffer 7. If number of TXT Buffers is less than 7, this field is reserved and has no function.

TXT8P Priority of TXT buffer 8. If number of TXT Buffers is less than 8, this field is reserved and has no function.

3.1.41 ERR_CAPT
Type: read-only
Offset: 0x7C

Size: 1 byte

63

s%;("z;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

Error code capture register. Determines position within CAN frame where last error was detected.

Bit index 7 | 6 | 5 4 3 | 2 | 1 | o
ERR_TYPE ERR_ERP ERR_POS
o [o | o 0 1 | 1 [1] 1

ERR_POS Position of last error.
0b0000 - ERC_POS_SOF - Error in Start of Frame
0b0001 - ERC_POS _ARB - Error in Arbitration Filed
0b0010 - ERC_POS _CTRL - Error in Control field
0b0011 - ERC_POS DATA - Error in Data Field
0b0100 - ERC_POS_CRC - Error in CRC Field
0b0101 - ERC_POS _ACK - Error in CRC delimiter, ACK field or ACK delimiter
0b0110 - ERC_POS _EOF - Error in End of frame field
0b0111 - ERC_POS_ERR - Error during Error frame
0b1000 - ERC_POS_OVRL - Error in Overload frame
0b1111 - ERC_POS_OTHER - Other position of error

ERR_ERP CTU CAN FD was error passive the time when last error was detected.
0b0 - ERR_ERP_ACTIVE - CTU CAN FD was error passive when it detected the error condition.
Obl - ERR_ERP_PASSIVE - CTU CAN FD was error active when it detected the error condition.

ERR_TYPE Type of last error.
0b000 - ERC_BIT _ERR - Bit Error
0b001 - ERC_CRC_ERR - CRC Error
0b010 - ERC_FRM _ERR - Form Error
0b011 - ERC_ACK_ERR - Acknowledge Error
0b100 - ERC_STUF_ERR - Stuff Error
0b101 - ERC_PRT_ERR - Parity Error in TXT Buffer RAM DATA 1 4 W ... DATA 61 64 W words.

3.1.42 RETR_CTR
Type: read-only
Offset: 0x7D

Size: 1 byte

Current value of Retransmit counter.

Bit index 7 | e | 5 | 4 3 | 2 | 1] o
Reserved RETR_CTR_VAL
- - [- [- o [o [o | o

RETR_CTR_VAL Current value of retransmitt counter.

64

s%.gg* CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.43 ALC
Type: read-only
Offset: Ox7E

Size: 1 byte

Arbitration lost capture register. Determines position of last arbitration loss within CAN frame.

Bit index 7 | 6 | 5 4 | 3 | 2 | 1 | 0
ALC_ID_FIELD ALC_BIT
o [o | o o | o | o [o [o

ALC _BIT Arbitration lost capture bit position. If ALC_ID_FIELD = ALC_BASE__ID then bit index of BASE identifier
in which arbitration was lost is given as: 11 - ALC_VAL. If ALC_ID_FIELD = ALC_EXTENSION then bit
index of EXTENDED identifier in which arbitration was lost is given as: 18 - ALC_VAL. For other values of
ALC _ID_FIELD, this value is undefined.

ALC_ID_FIELD Part of CAN Identifier in which arbitration was lost.
0b000 - ALC_RSVD - Unit did not loose arbitration since last reset.
0b001 - ALC_BASE ID - Arbitration was lost during base identifier.
0b010 - ALC_SRR_RTR - Arbitration was lost during first bit after base identifier (SRR of Extended Frame, RTR
bit of CAN 2.0 Base Frame)
0b011 - ALC _IDE - Arbitration was lost during IDE bit.
0b100 - ALC_EXTENSION - Arbitration was lost during ldentifier extension.
0b101 - ALC_RTR - Arbitration was lost during RTR bit after Identifier extension!

3.1.44 TS_INFO

Type: read-only
Offset: Ox7F

Size: 1 byte

Timestamp integration information

Bit index 7 | 6 5 | 4 | 3 | 2 | 1 | o
Reserved TS BITS
- - X | x | x | x | x | X

TS _BITS Number of active bits of CTU CAN FD time-base minus 1 (0x3F = 64 bit time-base).

65

s%;?//* CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.45 TRV _DELAY

Type: read-only

Offset: 0x80

Size: 2 bytes

Transmitter delay register. When transmitting CAN FD Frame, Transmitter delay is measured. After the measurement

(after FDF bit), it can be read out from this register. The value in this register is valid since first transmission of CAN
FD frame. After each next measurement the value is updated.

Bit index 5 | 14 | 13 | 12 | 1 | 1w | 9 | 8
Reserved
- S I N N S S N N
Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
TRV_DELAY _VALUE
- o [o [o [o [o [o [o [3o

TRV _DELAY_VALUE Measured Transmitter delay in multiple of minimal Time quanta.

3.1.46 SSP_CFG
Type: read-write
Offset: 0x82

Size: 2 bytes

Note: Register can be only written when SETTINGS[ENA] = 0, otherwise write has no effect.

Secondary sampling point configuration register. Used by transmitter in data bit rate for calculation of Secondary sampling
point.

Bit index 5 | w4 | 13 | 122 | 1 | 10 9o | 8
Reserved SSP_SRC
- - r-r-1r- 1 - o | o
Bit index 7 | 6 | s | 4 | 3 | 2 | 1 | o
SSP_OFFSET
o | o | o [o [1 | o [1 [o

SSP _OFFSET Secondary sampling point offset. Value is given as multiple of minimal Time quanta.

SSP_SRC Source of Secondary sampling point.
0b00-SSP_SRC_MEAS N _OFFSET - SSP position = TRV _DELAY (Measured Transmitter delay) + SSP_ OFFSET.
0b01 - SSP_SRC_NO _SSP - SSP is not used. Transmitter uses regular Sampling Point during data bit rate.
0b10 - SSP_SRC OFFSET - SSP position = SSP_ OFFSET. Measured Transmitter delay value is ignored.

66

CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.47 RX_FR_CTR
Type: read-only

Offset: 0x84

Size: 4 bytes

Note: Register is present only when sup _traffic_ctrs = true. Otherwise this address is reserved.

Bit index 31
=
Bit index 23 | 22 | 22 [20 | 19 | 18 [17 | 16
- RX_FR_CTR_VAL[23:16]
o | o | o | o | o | o | o [o
15
0
7
0

| 3 | 20 | 28 | 27 | 26 | 25 [=24
RX_FR_CTR_VAL[31:24]
o [o | o [o | o | o [o

| 14 | 13 [12 | u | 10 [9 [8
RX_FR_CTR_VAL[15:§]
[o [o [o [o |

Bit index
Bit index

RX FR_CTR_VAL Number of received frames by CTU CAN FD.

o
o
o

| 6 [5 | 4 [3 |
RX_FR_CTR_VAL[7:0]
o [o | o [o |

N
—
o

o
o
()

3148 TX FR_CTR
Type: read-only

Offset: 0x88

Size: 4 bytes

Note: Register is present only when sup _traffic _ctrs = true. Otherwise this address is reserved.

Bit index 38. | 3 | 29 | 28 | 22 | 26 | 25 | 2
TX_FR_CTR_VAL[31:24]

o | o | o | o [o | o | o [o0

Bit index 23 | 2 | 21 | 20 | 19 | 18 | 17 | 16
TX_FR_CTR_VAL[23:16]

o | o | o | o [o | o | o [o

Bit index 5 | 1w | 13 | 12 | mum | 10 | 9 | 8
TX_FR_CTR_VAL[15:8]

o | o | o | o [o | o | o [o

67

s%;?//* CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
TX_FR_CTR_VAL[7:0]
o | o | o [o [o | o [o [o

TX FR_CTR_VAL Number of transmitted frames by CTU CAN FD.

3.1.49 DEBUG_REGISTER

Type: read-only
Offset: 0x8C

Size: 4 bytes

Register for reading state of the controller. This register is only for debugging purposes!
Bit index 3. | 3 | 29 | 28 | 22 | 26 | 25 | 24
Reserved

Bit index 23 | 2 | 21 | 20 | 19 18 17 16
Reserved PC _SOF | PC_OVR | PC_SUSP

S I B R N 0 0

Bit index 15 14 13 12 11 10 9 8
PC_INT | PC_EOF | PC_ACKD | PC_ACK | PC_CRCD | PC_CRC | PC_STC | PC_DAT

0 0 0 0 0

Bit index 7 6 5 | 4 | 3 2 | 1 | o

PC_CON | PC_ARB DESTUFF_COUNT STUFF_COUNT
0 0 o | o | o o [o | o

STUFF_COUNT Actual stuff count modulo 8 as definned in ISO FD protocol. Stuff count is erased in the beginning
of CAN frame and increased by one with each stuff bit until Stuff count field in ISO FD frame. Then it stays fixed
until the beginning of next frame. In non-ISO FD or normal CAN stuff bits are counted until the end of a frame.
Note that this field is NOT gray encoded as defined in ISO FD standard. Stuff count is calculated only as long as
controller is transceiving on the bus. During the reception this value remains fixed!

o

o
o
(]

DESTUFF_COUNT Actual de-stuff count modulo 8 as defined in ISO FD protocol. De-Stuff count is erased in the
beginning of the frame and increased by one with each de-stuffed bit until Stuff count field in ISO FD Frame. Then
it stays fixed until beginning of next frame. In non-ISO FD or normal CAN de-stuff bits are counted until the end
of the frame. Note that this field is NOT grey encoded as defined in ISO FD standard. De-stuff count is calculated
in both. Transceiver as well as receiver.

PC_ARB Protocol control state machine is in Arbitration field.

PC_CON Protocol control state machine is in Control field.

68

ﬂ%? CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

PC_DAT Protocol control state machine is in Data field.

PC_STC Protocol control state machine is in Stuff Count field.
PC_CRC Protocol control state machine is in CRC field.

PC_CRCD Protocol control state machine is in CRC Delimiter field.

PC _ACK Protocol control state machine is in ACK field.

PC_ACKD Protocol control state machine is in ACK Delimiter field.
PC_EOF Protocol control state machine is in End of file field.

PC_INT Protocol control state machine is in Intermission field.
PC_SUSP Protocol control state machine is in Suspend transmission field.
PC_OVR Protocol control state machine is in Overload field.

PC_SOF Protocol control state machine is in Start of frame field.

3.1.50 YOLO_ REG

Type: read-only
Offset: 0x90

Size: 4 bytes

Register for fun :)

Bit index 31 | 3 | 29 | 28 | 22 | 26 | 25 | 24
YOLO VAL[31:24]

- t [t [o [1 | 1 [1t [1 | 0

Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
YOLO VAL[23:16]

- t [o [1+ [o | 1 [1 [o | 1

Bit index 15 | 14 | 13 | 12 | 1 [10 | 9 | 8
YOLO VAL[15:8]

- t [o | v [v [1 [1 [t | 0

Bit index 7 | 6 | 5 \ 4 \ 3 \ 2 \ 1 | 0
YOLO VAL[7:0]

- r [+ [2] o | 1 [1 [1 | 1

YOLO VAL What else could be in this register??

69

/a CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
5 Version 2.7.0, Commit:5d16182, 2026-02-01

3.1.51 TIMESTAMP LOW

Type: read-only
Offset: 0x94

Size: 4 bytes

Register with current value of CTU CAN FD time base. No shadowing is implemented on TIMESTAMP _LOW/HIGH
registers and user has to take care of proper read from both registers, since overflow of TIMESTAMP _LOW might occur
between read of TIMESTAMP _LOW and TIMESTAMP _HIGH.

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [=24
TIMESTAMP _LOW([31:24]
x | x | x | x | x | x | X | X
Bit index 23 | 22 | 21 [20 | 19 | 18 [17 | 16
TIMESTAMP _LOW([23:16]
x | x | x | x | x | x | X | X
Bit index 5 | 14 [13 | 12 | o | 10 | 9 | 8
TIMESTAMP_LOW[15:8]
x | x | x | x | x | x | X | X
Bit index 7 | 6 | | a4 | 3]
TIMESTAMP_LOW(7:0]
x | x | x | x | x | x | x | X

TIMESTAMP_LOW Bits 31:0 of time base.

()]
N
=
(@]

3.1.52 TlMESTAl\/IP_HlGH
Type: read-only
Offset: 0x98

Size: 4 bytes

Register with current value of CTU CAN FD time base. No shadowing is implemented on TIMESTAMP _LOW/HIGH
registers and user has to take care of proper read from both registers, since overflow of TIMESTAMP _LOW might occur
between read of TIMESTAMP _LOW and TIMESTAMP _HIGH.

Bit index 38 | 30 | 29 | 28 | 22 | 26 | 25 | 24
TIMESTAMP _HIGH[31:24]

x | x | x | X | x | x | X | X

Bit index 23 | 2 | 21 | 20 | 19 | 18 | 17 | 16
TIMESTAMP _HIGH[23:16]

x | x | x | x | x | x | X | X

70

CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
TIMESTAMP _HIGH[15:8]

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
TIMESTAMP _HIGH([7:0]

TIMESTAMP _HIGH Bits 63:32 of time base.

71

s%f/;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.2 TXT Buffer 1

Access to this memory region is mapped to TXT buffer 1. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB1_DATA 1) corresponds to FRAME _FORMAT _ W, second address (TXTB1_DATA _2) corresponds to
IDENTIFIER _W etc. The last address (TXTB1 _DATA _20) corresponds to DATA 61 64 W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset
TXTB1 DATA 1 0x100
TXTB1 DATA 2 0x104
TXTB1 DATA 3 0x108
TXTB1 DATA 4 0x10C
TXTB1 DATA 5 0x110
TXTB1 DATA 6 0x114
TXTB1 DATA 7 0x118
TXTB1 DATA 8 0x11C
TXTB1 DATA 9 0x120
TXTB1 _DATA 10 0x124
TXTB1 DATA 11 0x128
TXTB1 DATA 12 0x12C
TXTB1 DATA 13 0x130
TXTB1 _DATA 14 0x134
TXTB1 DATA 15 0x138
TXTB1 DATA 16 0x13C
TXTB1 DATA 17 0x140
TXTB1 DATA 18 0x144
TXTB1 DATA 19 0x148
TXTB1_DATA 20 0x14C
TXTB1 DATA 21 0x150
Reserved

72

s%f/;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.3 TXT Buffer 2

Access to this memory region is mapped to TXT buffer 2. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB2_DATA 1) corresponds to FRAME _FORMAT _ W, second address (TXTB2_DATA _2) corresponds to
IDENTIFIER _W etc. The last address (TXTB2 _DATA _20) corresponds to DATA_ 61 64 W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset
TXTB2 DATA 1 0x200
TXTB2 DATA 2 0x204
TXTB2 DATA 3 0x208
TXTB2 DATA 4 0x20C
TXTB2 DATA 5 0x210
TXTB2 DATA 6 0x214
TXTB2 DATA 7 0x218
TXTB2 DATA 8 0x21C
TXTB2 DATA 9 0x220
TXTB2_ DATA 10 0x224
TXTB2 DATA 11 0x228
TXTB2_ DATA 12 0x22C
TXTB2 DATA 13 0x230
TXTB2_ DATA 14 0x234
TXTB2 DATA 15 0x238
TXTB2_ DATA 16 0x23C
TXTB2 DATA 17 0x240
TXTB2_ DATA 18 0x244
TXTB2 DATA 19 0x248
TXTB2_ DATA 20 0x24C
TXTB2 DATA 21 0x250
Reserved

73

s%f/;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.4 TXT Buffer 3

Access to this memory region is mapped to TXT buffer 3. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB3_DATA 1) corresponds to FRAME _FORMAT _ W, second address (TXTB3_DATA _2) corresponds to
IDENTIFIER _W etc. The last address (TXTB3_DATA _20) corresponds to DATA_ 61 64 W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address

offset
TXTB3 DATA 1 0x300
TXTB3_ DATA 2 0x304
TXTB3 DATA 3 0x308
TXTB3_ DATA 4 0x30C
TXTB3 DATA 5 0x310
TXTB3 _DATA 6 0x314
TXTB3 DATA 7 0x318
TXTB3 DATA 8 0x31C
TXTB3 DATA 9 0x320
TXTB3_DATA 10 0x324
TXTB3 DATA 11 0x328
TXTB3_DATA 12 0x32C
TXTB3_ DATA 13 0x330
TXTB3_DATA 14 0x334
TXTB3_DATA 15 0x338
TXTB3_DATA 16 0x33C
TXTB3_DATA 17 0x340
TXTB3_DATA 18 0x344
TXTB3_DATA 19 0x348
TXTB3_DATA 20 0x34C
TXTB3 DATA 21 0x350

Reserved

74

s%f/;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.5 TXT Buffer 4

Access to this memory region is mapped to TXT buffer 4. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB4_DATA 1) corresponds to FRAME _FORMAT _ W, second address (TXTB4_DATA _2) corresponds to
IDENTIFIER _W etc. The last address (TXTB4 DATA _20) corresponds to DATA 61 64 W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address

offset
TXTB4 DATA 1 0x400
TXTB4 DATA 2 0x404
TXTB4 DATA 3 0x408
TXTB4 DATA 4 0x40C
TXTB4 DATA 5 0x410
TXTB4 DATA 6 0x414
TXTB4 DATA 7 0x418
TXTB4 DATA 8 0x41C
TXTB4 DATA 9 0x420
TXTB4 DATA 10 0x424
TXTB4 DATA 11 0x428
TXTB4 DATA 12 0x42C
TXTB4 DATA 13 0x430
TXTB4 DATA 14 0x434
TXTB4 DATA 15 0x438
TXTB4 DATA 16 0x43C
TXTB4 DATA 17 0x440
TXTB4 DATA 18 0x444
TXTB4 DATA 19 0x448
TXTB4 DATA 20 0x44C
TXTB4 DATA 21 0x450

Reserved

75

s%f/;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.6 TXT Buffer 5

Access to this memory region is mapped to TXT buffer 5. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB5_DATA 1) corresponds to FRAME _FORMAT _ W, second address (TXTB5 _DATA _2) corresponds to
IDENTIFIER _W etc. The last address (TXTB5 _DATA _20) corresponds to DATA 61 64 W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset
TXTB5 DATA 1 0x500
TXTB5_ DATA 2 0x504
TXTB5 DATA 3 0x508
TXTB5 DATA 4 0x50C
TXTB5 DATA 5 0x510
TXTB5 DATA 6 0x514
TXTB5 DATA 7 0x518
TXTB5 DATA 8 0x51C
TXTB5 DATA 9 0x520
TXTB5 DATA 10 0x524
TXTB5 DATA 11 0x528
TXTB5 DATA 12 0x52C
TXTB5 DATA 13 0x530
TXTB5 DATA 14 0x534
TXTB5 DATA 15 0x538
TXTB5 DATA 16 0x53C
TXTB5 DATA 17 0x540
TXTB5 DATA 18 0x544
TXTB5 DATA 19 0x548
TXTB5_ DATA 20 0x54C
TXTB5 DATA 21 0x550
Reserved

76

s%f/;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.7 TXT Buffer 6

Access to this memory region is mapped to TXT buffer 6. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB6_DATA 1) corresponds to FRAME _FORMAT _ W, second address (TXTB6_DATA _2) corresponds to
IDENTIFIER _W etc. The last address (TXTB6 _DATA _20) corresponds to DATA_ 61 64 W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address

offset
TXTB6 DATA 1 0x600
TXTB6_ DATA 2 0x604
TXTB6 DATA 3 0x608
TXTB6_ DATA 4 0x60C
TXTB6 DATA 5 0x610
TXTB6_ DATA 6 0x614
TXTB6 DATA 7 0x618
TXTB6_ DATA 8 0x61C
TXTB6 DATA 9 0x620
TXTB6_DATA 10 0x624
TXTB6 DATA 11 0x628
TXTB6 _DATA 12 0x62C
TXTB6 DATA 13 0x630
TXTB6_DATA 14 0x634
TXTB6 DATA 15 0x638
TXTB6_DATA 16 0x63C
TXTB6 DATA 17 0x640
TXTB6_DATA 18 0x644
TXTB6 DATA 19 0x648
TXTB6_DATA 20 0x64C
TXTB6 DATA 21 0x650

Reserved

77

s%f/;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.8 TXT Buffer 7

Access to this memory region is mapped to TXT buffer 7. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB7 _DATA 1) corresponds to FRAME _FORMAT _ W, second address (TXTB7_DATA _2) corresponds to
IDENTIFIER _W etc. The last address (TXTB7 _DATA _20) corresponds to DATA_ 61 64 W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address

offset
TXTB7 DATA 1 0x700
TXTB7_DATA 2 0x704
TXTB7 DATA 3 0x708
TXTB7_DATA 4 0x70C
TXTB7 DATA 5 0x710
TXTB7_DATA 6 0x714
TXTB7 DATA 7 0x718
TXTB7_DATA 8 0x71C
TXTB7 DATA 9 0x720
TXTB7_DATA 10 0x724
TXTB7 DATA 11 0x728
TXTB7_ DATA 12 0x72C
TXTB7 DATA 13 0x730
TXTB7_DATA 14 0x734
TXTB7 _DATA 15 0x738
TXTB7_DATA 16 0x73C
TXTB7 DATA 17 0x740
TXTB7_DATA 18 0x744
TXTB7 DATA 19 0x748
TXTB7_DATA 20 0x74C
TXTB7 DATA 21 0x750

Reserved

78

s%f/;/ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.9 TXT Buffer 8

Access to this memory region is mapped to TXT buffer 8. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB8_DATA 1) corresponds to FRAME _FORMAT _ W, second address (TXTB8 DATA _2) corresponds to
IDENTIFIER _W etc. The last address (TXTB8_DATA _20) corresponds to DATA_ 61 64 W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address

offset
TXTB8 DATA 1 0x800
TXTB8 DATA 2 0x804
TXTB8 DATA 3 0x808
TXTB8 DATA 4 0x80C
TXTB8 DATA 5 0x810
TXTB8 DATA 6 0x814
TXTB8 DATA 7 0x818
TXTB8 DATA 8 0x81C
TXTB8 DATA 9 0x820
TXTB8_DATA 10 0x824
TXTB8 DATA 11 0x828
TXTB8_ DATA 12 0x82C
TXTB8 DATA 13 0x830
TXTB8_ DATA 14 0x834
TXTB8 DATA 15 0x838
TXTB8_ DATA 16 0x83C
TXTB8 DATA 17 0x840
TXTB8_ DATA 18 0x844
TXTB8 DATA 19 0x848
TXTB8_DATA 20 0x84C
TXTB8 DATA 21 0x850

Reserved

79

s%;? CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.10 Test registers

Test registers memory region. Contains registers with manufacturing testability features.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset
TST_CONTROL 0x900
TST_ DEST 0x904
TST_WDATA 0x908
TST_RDATA 0x90C
Reserved

3.10.1 TST_ CONTROL
Type: read-write

Offset: 0x900

Size: 4 bytes

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Testability control register. Contains configuration of test functions.

Bit index 31 | 30 | 29 \ 28 \ 27 \ 26 \ 25 | 24
Reserved

— 1 - [- 1 - 1 - 1 - T - T~

Bit index 23 | 2 | 21 | 20 | 9 | 18 | 17 | 16
Reserved

— 1 - 1 - 1 - 1 - [- T - T -

Bit index 5 | 1w | 13 | 12 | m | 10 | 9 | 8
Reserved

— 1 - [- 1 - 1 - 1 - T - T~

Bit index 7 | 6 | 5 | a4 | 3 | 2 1 0

Reserved TWRSTB | TMAENA
— [- 1 - 1 - T - [- 1 x [x

TMAENA Enable test access to CTU CAN FD memories.

TWRSTB Writing 1 executes write acess to a memory/address given by TST DEST register. 0 does not need to be
written, this bit is cleared automatically.

80

%’.@ CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

3.10.2 TST_ DEST
Type: read-write

Offset: 0x904

Size: 4 bytes

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.
Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [24
Reserved
— 1 - [- 1 - 1 - T - T - T
Bit index 23 | 22 | 21 | 20 19 | 18 | 17 | 16
Reserved TST _MTGT

— T - 1 - T - X 1 x | X [X

Bit index 5 | w4 | 13 | 122 [wm | 10 | 9 | 8
TST_ADDR[15:8]

X [x | x | x [x | x | x | X

Bit index 7 | e | 5 | a4 | 3 | 2 [1] o
TST_ADDR([7:0]

X | x | x | x | x | x | X] X

TST_ADDR Address for test memory access within tested memory.

TST_MTGT Target memory to be accessed.

0b0000 - TMTGT _NONE - No target memory is selected for test access.
0b0001 - TMTGT _ RXBUF - RX buffer memory is selected for test access.
0b0010 - TMTGT _ TXTBUF1 - TXT buffer 1 memory is selected for test access.
0b0011 - TMTGT _ TXTBUF2 - TXT buffer 2 memory is selected for test access.
0b0100 - TMTGT _ TXTBUF3 - TXT buffer 3 memory is selected for test access.
0b0101 - TMTGT _ TXTBUF4 - TXT buffer 4 memory is selected for test access.
0b0110 - TMTGT _ TXTBUF5 - TXT buffer 5 memory is selected for test access.
0b0111 - TMTGT _TXTBUF6 - TXT buffer 6 memory is selected for test access.
0b1000 - TMTGT _ TXTBUF7 - TXT buffer 7 memory is selected for test access.
0b1001 - TMTGT _TXTBUF8 - TXT buffer 8 memory is selected for test access.

3.10.3 TST_WDATA
Type: read-write
Offset: 0x908

Size: 4 bytes

81

CTU CAN FD IP Core - Datasheet 3. CAN FD CORE MEMORY MAP
Version 2.7.0, Commit:5d16182, 2026-02-01

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [=24
TST_WDATA[31:24]
x | x | x | x | x | x | X | X
Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
TST_WDATA[23:16]
x | x | x | x | x | x | X | X
Bit index 5 | 14 | 13 | 12 [o | 10 | 9 | 8
TST_WDATA[15:8]
x | x | x | x | x | x | X | X
Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
TST_WDATA[7:0]
x | x | x | x | x | x | X | X
TST_WDATA Write data for test access.
3.10.4 TST _ RDATA
Type: read-only
Offset: 0x90C
Size: 4 bytes
Bit index 381 | 3 | 29 | 28 | 22 | 26 | 25 | 24
TST_RDATA[31:24]
x | x | x | x | x | x | X | X
Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
TST _RDATA[23:16]
x | x | x | X | x | x | X | X
Bit index 5 | w4 | 13 | 12 | u | 10 | 9 | 8
TST_RDATA[15:8]
x | x | x | x | x | x | X | X
Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
TST_RDATA[7:0]
x | x | x | x | x | x | X | X

TST_RDATA Read data for test access.

82

4. CAN FD frame format

CAN Frame format describtion as it is stored in TXT Buffers and RX Buffer.

83

CTU CAN FD IP Core - Datasheet
Version 2.7.0, Commit:5d16182, 2026-02-01

f

4. CAN FD FRAME FORMAT

4.1 CAN FD Frame format

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset
FRAME FORMAT W 0x0
IDENTIFIER_W Ox4
TIMESTAMP L W 0x8
TIMESTAMP_U_W 0xC
DATA 1 4 W 0x10
DATA 5 8 W Ox14
DATA 9 12 W 0x18
DATA 13 16 W 0x1C
DATA 17 20 W 0x20
DATA 21 24 W 0x24
DATA 25 28 W 0x28
DATA 29 32 W 0x2C
DATA 33 36 W 0x30
DATA 37 40 W 0x34
DATA 41 44 W 0x38
DATA 45 48 W 0x3C
DATA 49 52 W 0x40
DATA 53 56 W Ox44
DATA 57 60 W 0x48
DATA 61 64 W 0x4C
FRAME_TEST W 0x50
4.1.1 FRAME_FORMAT W
Type:
Offset: 0x0
Size: 4 bytes
Frame format word with CAN frame metadata.
Bit index 31 | 3 | 20 | 28 27 26 | 25 24
Reserved LBTBI IVLD
— T - 1 - T - X X | X X
Bit index 23 | 22 | 21 20 19 18 | 17 | 16
ERF_TYPE ERF_ERP ERF_POS
X | x | X X X X | x | X

84

st.%gg CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
/rf Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 15 | 1 | 13 | 12 | 1 10 9 8
RWCNT ESI_RSV | BRS LBPF
X | x | x | X]| X X X X
Bit index 7 6 5 4 3 | 2 | 1 | o
FDF IDE RTR ERF DLC
X X X X X | x | x | X

DLC Data Length Code.

ERF Error Frame Flag. When set, the current frame in RX Buffer is an Error frame. This bit has no meaning in TXT
buffers.
0b0 - ERF_CAN_FRAME - Frame in RX Buffer is an Error frame.
Obl - ERF_ERR_FRAME - Frame in RX Buffer is a regular CAN frame

RTR Logic 1 indicates Remote frame. Has meaning only for CAN frames. CAN FD does not have RTR frames.
0b0 - NO_RTR_FRAME - CAN frame is not RTR frame.
Obl - RTR_FRAME - CAN frame is RTR frame.

IDE Extended ldentifier Type. Logic 1 indicates CAN frame with both Base identifier and ldentifier extension. Logic 0
indicates CAN frame with only Base identifier.
0b0 - BASE - Frame Identifier is Basic (11 bits)
Obl - EXTENDED - Frame Identifier is Extended (11 + 18 bits)

FDF Flexible Data-rate Format. Distinguishes between CAN 2.0 and CAN FD Frames.
0b0 - NORMAL _CAN - Frame is CAN frame.
Obl - FD_CAN - Frame is CAN FD frame.

LBPF Loop-Back Frame. When this bit is set, the current framein RX Buffer was a frame transmitted by unit itself due
tooperation in Loopback Mode. This bit has no meaning inTXT Buffers.
0b0 - LBPF_FOREIGN - The frame was transmitted by other node on the bus.
0bl - LBPF_LOOPBACK - The frame was transmitted by the unit itself.

BRS Bit Rate Shift. In case of CAN FD frames indicates whether bit rate is shifted CAN FD frame. This bit has no
meaning for CAN frames.
0b0 - BR_NO _SHIFT - Bit rate should not be shifted if frame is CAN FD frame.
Obl - BR_SHIFT - Bit rate should be shifted if frame is CAN FD frame.

ESI RSV Error State Indicator bit for received CAN FD frames. Bit has no meaning for CAN frames nor for transmitted
CAN FD frames (in TXT buffer).
0b0 - ESI_ERR_ACTIVE - Transmitted of received CAN FD frame is error active.
Obl - ESI__ERR_PASIVE - Transmitted of received CAN FD frame is error passive.

RWCNT Size of CAN frame in RX buffer without FRAME _FORMAT WORD. (E.g RTR frame RWCNT=3, 64 Byte
FD frame RWCNT=19). In TXT buffer this field has no meaning.

ERF_POS Error Frame position of Error Frame recorder in RX Buffer. This bit has no meaning in TXT Buffers. The
encoding of this field is equal to ERR_CAPT[ERR _POS] register.

ERF_ERP CTU CAN FD was Error Passive state at time when the error was detected and stored to the RX Buffer.
This bit has no meaning in TXT Buffers. The encoding of this field is equal to ERR _CAPT[ERR _STATE] register.

85

s%;?//* CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
/ A3 Version 2.7.0, Commit:5d16182, 2026-02-01

ERF_TYPE Error frame type of Error Frame recorder in RX Buffer. This bit has no meaning in TXT Buffers. The
encoding of this field is equal to ERR_CAPT[ERR _TYPE] register.

IVLD IDENTIFIER W word contains a valid identifier. This field is valid only in RX Buffer, it has no meaning in TXT
Buffers.
0b0 - IVLD _INALID - IDENTIFIER W does not contain a valid CAN FD identifier.
Obl - IVLD _VALID - IDENTIFIER_W contains a valid CAN FD identifier.

LBTBI Loop-Back TXT Buffer index. This field is only valid in RX Buffer and when FRAME _FORMAT _W[LBTBI]=1.
This field has no meaning in TXT Buffers.
0b000 - TXT _BUF 1 - TXT Buffer 1
0b001 - TXT_BUF _2 - TXT Buffer 2
0b010 - TXT_BUF _3 - TXT Buffer 3
0b011 - TXT _BUF_4 - TXT Buffer 4
0b100 - TXT _BUF _5 - TXT Buffer 5
0b101 - TXT _BUF_6 - TXT Buffer 6
0b110 - TXT_BUF _7 - TXT Buffer 7
0b111 - TXT_BUF_8 - TXT Buffer 8

4.1.2 IDENTIFIER W
Type:
Offset: 0x4

Size: 4 bytes

CAN Identifier

Bit index 31 [30 | 29 28 | 27 | 26 | 25 | 24
Reserved IDENTIFIER_BASE[10:6]
- - 1 - x [x | x | x [X
Bit index 23 | 2 | 21 | 20 [19 | 18 17 | 16
IDENTIFIER_BASE[5:0] IDENTIFIER_EXT[17:16]
X [x | x | x | x] X X [X
Bit index 5 | 14 | 13 | 12 | 1 | 10 [9 | 8
IDENTIFIER_EXT[15:8]
x | x | x | x | x | x | x] X
Bit index 7 | 6 | 5 | a4 | 3 | 2 | 1 | o
IDENTIFIER_EXT[7:0]
X | x | x | x | x | x | x] X

IDENTIFIER EXT Extended Identifier of CAN frame. Has meaning only if IDE of FRAME_FORMAT _W is EX-
TENDED.

IDENTIFIER BASE Base Identifier of CAN frame.

86

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
5 Version 2.7.0, Commit:5d16182, 2026-02-01

4.1.3 TIMESTAMP L W

Type:
Offset: 0x8
Size: 4 bytes
Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 | 24
TIME_STAMP_L_W[31:24]
x | x | x | x | x | x | X | X
Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
TIME_STAMP_L_W[23:16]
x | x | x | x | x | x | X | X
Bit index 5 | w4 | 13 | 122 [wm | 10 | 9 | 8
TIME_STAMP_L_W/[15:§]
x | x | x | x | x | x | X | X
Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
TIME_STAMP_L_WI[7:0]
x | x | x | x | x | x | X | X

TIME_STAMP L W Lower 32 bits of timestamp when the frame should be transmitted or when it was received.

4.1.4 TIMESTAMP U W

Type:
Offset: 0xC
Size: 4 bytes
Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [24
TIMESTAMP _U_ W[31:24]
x | x | x | x | x | x | X | X
Bit index 23 | 22 | 21 [20 | 19 | 18 [17 | 16
TIMESTAMP _U_ W[23:16]
x | x | x | x | x | x | x | X
Bit index 5 | 1w | 13 | 12 | um | 10 | 9 | 8
TIMESTAMP_U_ W[15:8]
x | x | x | x | x | x | X | X
Bit index 7 | e | s | a4 | 3 | 2 | 1 | o
TIMESTAMP _U_ W[7:0]
x | x | x | X | x | x | X | X

TIMESTAMP U W Upper 32 bits of timestamp when the frame should be transmitted or when it was received.

87

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
Version 2.7.0, Commit:5d16182, 2026-02-01

415 DATA 1 4 W
Type:
Offset: 0x10

Size: 4 bytes

Bit index 31 | 30 | 290 | 28 | 27 | 26 | 25 | 24
DATA_4

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
DATA_3

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_2

x | x | x | x | x | x | X | X

Bit index 7 | 6 | s | 4 | 3 | 2 | 1 | o
DATA_1

x | x | x | x | x | x | X | X

DATA 1 Data byte 1 of CAN Frame.

DATA 2 Data byte 2 of CAN Frame.
DATA 3 Data byte 3 of CAN Frame.

DATA 4 Data byte 4 of CAN Frame.

416 DATA 5 8 W
Type:
Offset: 0x14

Size: 4 bytes

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [24

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16

88

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_6

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_5

DATA 5 Data byte 5 of CAN Frame.
DATA 6 Data byte 6 of CAN Frame.
DATA 7 Data byte 7 of CAN Frame.

DATA 8 Data byte 8 of CAN Frame.

417 DATA 9 12 W
Type:
Offset: 0x18

Size: 4 bytes

Bit index 381 | 3 | 29 | 28 | 22 | 26 | 25 | 24
DATA_12

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
DATA_11

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_10

x | x | x | x | x | x | X | X

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_9

x | x | x | x | x | x | X | X

DATA 9 Data byte 9 of CAN Frame.

DATA 10 Data byte 10 of CAN Frame.
DATA 11 Data byte 11 of CAN Frame.

DATA 12 Data byte 12 of CAN Frame.

89

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
Version 2.7.0, Commit:5d16182, 2026-02-01

4.1.8 DATA 13 16 W
Type:
Offset: 0x1C

Size: 4 bytes

Bit index 31 | 30 | 290 | 28 | 27 | 26 | 25 | 24
DATA_16

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
DATA_15

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_14

x | x | x | x | x | x | X | X

Bit index 7 | 6 | s | 4 | 3 | 2 | 1 | o
DATA_13

x | x | x | x | x | x | X | X

DATA 13 Data byte 13 of CAN Frame.

DATA 14 Data byte 14 of CAN Frame.
DATA 15 Data byte 15 of CAN Frame.

DATA 16 Data byte 16 of CAN Frame.

4.1.9 DATA 17 20 W
Type:
Offset: 0x20

Size: 4 bytes

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [24
DATA_20
x | x | x | x | x | x | X | X

DATA 19
x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16

90

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_18

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_17

DATA 17 Data byte 17 of CAN Frame.
DATA 18 Data byte 18 of CAN Frame.
DATA 19 Data byte 19 of CAN Frame.

DATA 20 Data byte 20 of CAN Frame.

4.1.10 DATA_21_24_W
Type:
Offset: 0x24

Size: 4 bytes

Bit index 381 | 3 | 29 | 28 | 22 | 26 | 25 | 24
DATA_24

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
DATA_23

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_22

x | x | x | x | x | x | X | X

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_21

x | x | x | x | x | x | X | X

DATA 21 Data byte 21 of CAN Frame.

DATA 22 Data byte 22 of CAN Frame.
DATA 23 Data byte 23 of CAN Frame.

DATA 24 Data byte 24 of CAN Frame.

91

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
Version 2.7.0, Commit:5d16182, 2026-02-01

4.1.11 DATA 25 28 W
Type:
Offset: 0x28

Size: 4 bytes

Bit index 31 | 30 | 290 | 28 | 27 | 26 | 25 | 24
DATA 28

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
DATA_27

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_26

x | x | x | x | x | x | X | X

Bit index 7 | 6 | s | 4 | 3 | 2 | 1 | o
DATA_25

x | x | x | x | x | x | X | X

DATA 25 Data byte 25 of CAN Frame.

DATA 26 Data byte 26 of CAN Frame.
DATA 27 Data byte 27 of CAN Frame.

DATA 28 Data byte 28 of CAN Frame.

4.1.12 DATA_29_32_W
Type:
Offset: 0x2C

Size: 4 bytes

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [24
DATA_32
x | x | x | x | x | x | X | X

DATA 31
x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16

92

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
5 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_30

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_29

DATA 29 Data byte 29 of CAN Frame.
DATA 30 Data byte 30 of CAN Frame.
DATA 31 Data byte 31 of CAN Frame.

DATA 32 Data byte 32 of CAN Frame.

4.1.13 DATA 33 36 W
Type:
Offset: 0x30

Size: 4 bytes

Bit index 381 | 3 | 29 | 28 | 22 | 26 | 25 | 24
DATA_36

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
DATA_35

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_34

x | x | x | x | x | x | X | X

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_33

x | x | x | x | x | x | X | X

DATA 33 Data byte 33 of CAN Frame.

DATA 34 Data byte 34 of CAN Frame.
DATA 35 Data byte 35 of CAN Frame.

DATA 36 Data byte 36 of CAN Frame.

93

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
Version 2.7.0, Commit:5d16182, 2026-02-01

4.1.14 DATA 37 _40 W
Type:
Offset: 0x34

Size: 4 bytes

Bit index 31 | 30 | 290 | 28 | 27 | 26 | 25 | 24
DATA_40

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
DATA_39

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_38

x | x | x | x | x | x | X | X

Bit index 7 | 6 | s | 4 | 3 | 2 | 1 | o
DATA_37

x | x | x | x | x | x | X | X

DATA 37 Data byte 37 of CAN Frame.

DATA 38 Data byte 38 of CAN Frame.
DATA 39 Data byte 39 of CAN Frame.

DATA 40 Data byte 40 of CAN Frame.

4.1.15 DATA 41 44 W
Type:
Offset: 0x38

Size: 4 bytes

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [24
DATA_44
x | x | x | x | x | x | X | X

DATA_43
x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16

94

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
5 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_42

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_41

DATA 41 Data byte 41 of CAN Frame.
DATA 42 Data byte 42 of CAN Frame.
DATA 43 Data byte 43 of CAN Frame.

DATA 44 Data byte 44 of CAN Frame.

4.1.16 DATA 45 48 W
Type:
Offset: 0x3C

Size: 4 bytes

Bit index 381 | 3 | 29 | 28 | 22 | 26 | 25 | 24
DATA_48

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
DATA_47

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_ 46

x | x | x | x | x | x | X | X

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_45

x | x | x | x | x | x | X | X

DATA 45 Data byte 45 of CAN Frame.

DATA 46 Data byte 46 of CAN Frame.
DATA 47 Data byte 47 of CAN Frame.

DATA 48 Data byte 48 of CAN Frame.

95

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
Version 2.7.0, Commit:5d16182, 2026-02-01

4.1.17 DATA 49 52 W
Type:
Offset: 0x40

Size: 4 bytes

Bit index 31 | 30 | 290 | 28 | 27 | 26 | 25 | 24
DATA_52

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
DATA_51

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_50

x | x | x | x | x | x | X | X

Bit index 7 | 6 | s | 4 | 3 | 2 | 1 | o
DATA_49

x | x | x | x | x | x | X | X

DATA 49 Data byte 49 of CAN Frame.

DATA 50 Data byte 50 of CAN Frame.
DATA 51 Data byte 51 of CAN Frame.

DATA 52 Data byte 52 of CAN Frame.

4.1.18 DATA 53 56 W
Type:
Offset: 0x44

Size: 4 bytes

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [24
DATA_54
x | x | x | x | x | x | X | X

DATA _55
x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16

96

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
5 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_56

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_53

DATA 53 Data byte 53 of CAN Frame.
DATA 56 Data byte 56 of CAN Frame.
DATA 55 Data byte 55 of CAN Frame.

DATA 54 Data byte 54 of CAN Frame.

4.1.19 DATA 57 60 W
Type:
Offset: 0x48

Size: 4 bytes

Bit index 381 | 3 | 29 | 28 | 22 | 26 | 25 | 24
DATA_ 60

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16
DATA_59

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_58

x | x | x | x | x | x | X | X

Bit index 7 | e | s | 4 | 3 | 2 | 1 | o
DATA_57

x | x | x | x | x | x | X | X

DATA 57 Data byte 57 of CAN Frame.

DATA 58 Data byte 58 of CAN Frame.
DATA 59 Data byte 59 of CAN Frame.

DATA 60 Data byte 60 of CAN Frame.

97

CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
Version 2.7.0, Commit:5d16182, 2026-02-01

4.1.20 DATA 61 64 W
Type:
Offset: 0x4C

Size: 4 bytes

Bit index 31 | 30 | 290 | 28 | 27 | 26 | 25 | 24
DATA 64

x | x | x | x | x | x | X | X

Bit index 23 | 2 | 21 | 20 [19 | 18 | 17 | 16
DATA_63

x | x | x | x | x | x | X | X

Bit index 5 | w4 | 13 | 12 [o | 10 | 9 | 8
DATA_62

x | x | x | x | x | x | X | X

Bit index 7 | 6 | s | 4 | 3 | 2 | 1 | o
DATA_61

x | x | x | x | x | x | X | X

DATA 61 Data byte 61 of CAN Frame.

DATA 62 Data byte 62 of CAN Frame.
DATA 63 Data byte 63 of CAN Frame.

DATA 64 Data byte 64 of CAN Frame.

4.1.21 FRAME_ TEST W
Type:
Offset: 0x50

Size: 4 bytes

Bit index 31 | 3 | 20 | 28 | 27 | 26 | 25 [24

Reserved

Bit index 23 | 2 | 22 | 20 | 19 | 18 | 17 | 16

Reserved

98

/a CTU CAN FD IP Core - Datasheet 4. CAN FD FRAME FORMAT
5 Version 2.7.0, Commit:5d16182, 2026-02-01

Bit index 15 | 14 | 13 2 | 1o | 10 | 9 | 8
Reserved TPRM
- - [- x [x [x [X [X
Bit index 7 | e | 5 | a4 | 3 2 1 0
Reserved SDLC FCRC FSTC
S IR B B I X | x | X

FSTC Flip Stuff count field bit when this frame is transmitted. This field has effect only in transmitted frames.
FCRC Flip CRC field bit when this frame is transmitted. This field has effect only in transmitted frames.
SDLC Swap DLC in transmitted frame.

TPRM Test Parameter

99

Bibliography

[1] CTU CAN FD, System architecture.

100

	Format
	1 Introduction
	1.1 General overview
	1.2 Features
	1.3 License
	1.4 Source code access
	1.5 Block diagram
	1.6 Implementation parameters
	1.7 Configuration parameters

	2 Functional description
	2.1 Clock
	2.2 Reset
	2.3 Memory organization
	2.4 Time base
	2.5 Operating modes
	2.6 Initialization sequence
	2.7 De-initialization sequence
	2.8 CAN bus configuration
	2.8.1 Bit rate
	500 Kbit / 2 Mbit example

	2.8.2 Transmitter delay
	2.8.3 Secondary sampling point
	2.8.4 CAN FD support
	2.8.5 Protocol exception handling
	2.8.6 Implementation type
	2.8.7 Minimum bit time / Maximal bit rate

	2.9 CAN frame transmission
	2.9.1 TXT buffer selection
	2.9.2 Time triggered transmission mode
	2.9.3 Type of transmitted CAN frame
	2.9.4 Retransmitt limitation
	2.9.5 Abort
	2.9.6 TXT buffer - Bus-off behavior
	2.9.7 Sample code

	2.10 CAN frame reception
	2.10.1 Frame count
	2.10.2 Error frame reception
	2.10.3 RX buffer memory
	2.10.4 RX buffer status
	2.10.5 Overrun
	2.10.6 Flush
	2.10.7 Inconsistency protection
	2.10.8 Timestamping
	2.10.9 Frame filtering
	Bit filter
	Range filter

	2.10.10 Sample code 1 - Frame reception in automatic mode (32-bit access)
	2.10.11 Sample code 2 - Frame reception in manual mode (8-bit access)
	2.10.12 Sample code 3 - Bit filter configuration

	2.11 Fault confinement
	2.12 Interrupts
	2.12.1 Frame transmission and reception
	2.12.2 Fault confinement
	2.12.3 TXT buffers and RX buffer
	2.12.4 Error and Overload frame
	2.12.5 Other

	2.13 Fault Tolerance
	2.13.1 Parity protection on RX buffer RAM
	2.13.2 Parity protection on TXT Buffer RAMs
	2.13.3 TXT Buffer Backup mode
	2.13.4 Parity protection testing

	2.14 Special modes
	2.14.1 Loopback mode
	2.14.2 Self test mode
	2.14.3 Acknowledge forbidden mode
	2.14.4 Self acknowledge mode
	2.14.5 Bus monitoring mode
	2.14.6 Restricted operation mode
	2.14.7 Test mode

	2.15 Corrupting transmitted CAN frames
	2.15.1 Flip a bit of CRC field
	2.15.2 Flip a bit of Stuff count field
	2.15.3 Replace DLC with arbitrary value

	2.16 Other features
	2.16.1 Error code capture
	2.16.2 Arbitration lost capture
	2.16.3 Traffic counters
	2.16.4 Debug register
	2.16.5 Memory testability

	3 CAN FD Core memory map
	3.1 Control registers
	3.1.1 DEVICE_ID
	3.1.2 VERSION
	3.1.3 MODE
	3.1.4 SETTINGS
	3.1.5 STATUS
	3.1.6 COMMAND
	3.1.7 INT_STAT
	3.1.8 INT_ENA_SET
	3.1.9 INT_ENA_CLR
	3.1.10 INT_MASK_SET
	3.1.11 INT_MASK_CLR
	3.1.12 BTR
	3.1.13 BTR_FD
	3.1.14 EWL
	3.1.15 ERP
	3.1.16 FAULT_STATE
	3.1.17 REC
	3.1.18 TEC
	3.1.19 ERR_NORM
	3.1.20 ERR_FD
	3.1.21 CTR_PRES
	3.1.22 FILTER_A_MASK
	3.1.23 FILTER_A_VAL
	3.1.24 FILTER_B_MASK
	3.1.25 FILTER_B_VAL
	3.1.26 FILTER_C_MASK
	3.1.27 FILTER_C_VAL
	3.1.28 FILTER_RAN_LOW
	3.1.29 FILTER_RAN_HIGH
	3.1.30 FILTER_CONTROL
	3.1.31 FILTER_STATUS
	3.1.32 RX_MEM_INFO
	3.1.33 RX_POINTERS
	3.1.34 RX_STATUS
	3.1.35 RX_SETTINGS
	3.1.36 RX_DATA
	3.1.37 TX_STATUS
	3.1.38 TX_COMMAND
	3.1.39 TXTB_INFO
	3.1.40 TX_PRIORITY
	3.1.41 ERR_CAPT
	3.1.42 RETR_CTR
	3.1.43 ALC
	3.1.44 TS_INFO
	3.1.45 TRV_DELAY
	3.1.46 SSP_CFG
	3.1.47 RX_FR_CTR
	3.1.48 TX_FR_CTR
	3.1.49 DEBUG_REGISTER
	3.1.50 YOLO_REG
	3.1.51 TIMESTAMP_LOW
	3.1.52 TIMESTAMP_HIGH

	3.2 TXT Buffer 1
	3.3 TXT Buffer 2
	3.4 TXT Buffer 3
	3.5 TXT Buffer 4
	3.6 TXT Buffer 5
	3.7 TXT Buffer 6
	3.8 TXT Buffer 7
	3.9 TXT Buffer 8
	3.10 Test registers
	3.10.1 TST_CONTROL
	3.10.2 TST_DEST
	3.10.3 TST_WDATA
	3.10.4 TST_RDATA

	4 CAN FD frame format
	4.1 CAN FD Frame format
	4.1.1 FRAME_FORMAT_W
	4.1.2 IDENTIFIER_W
	4.1.3 TIMESTAMP_L_W
	4.1.4 TIMESTAMP_U_W
	4.1.5 DATA_1_4_W
	4.1.6 DATA_5_8_W
	4.1.7 DATA_9_12_W
	4.1.8 DATA_13_16_W
	4.1.9 DATA_17_20_W
	4.1.10 DATA_21_24_W
	4.1.11 DATA_25_28_W
	4.1.12 DATA_29_32_W
	4.1.13 DATA_33_36_W
	4.1.14 DATA_37_40_W
	4.1.15 DATA_41_44_W
	4.1.16 DATA_45_48_W
	4.1.17 DATA_49_52_W
	4.1.18 DATA_53_56_W
	4.1.19 DATA_57_60_W
	4.1.20 DATA_61_64_W
	4.1.21 FRAME_TEST_W

