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Format

Throughout this document following notations are kept:

� Common text is written with this font.

� Memory registers are always described with capital letters e.g. REGISTER or REGISTER [BIT_FIELD] to represent

register or bit �eld within a register.

� Signal names and generic names are written by bold lower-case cursive (e.g. can_rx)

� Explicit terms from ISO11898-1 2015 are marked via red color (e.g. SOF bit). De�nition of these terms can be

found in [1].

� Open issues and TODOs are written in blue font like so TODO: not yet implemented.

1
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1. GENERAL INFORMATION

1. General Information

1.1 Introduction

This document describes architecture of CTU CAN FD IP Core. It describes external interfaces of the core as well

as internal architecture. This document does not provide functional description of the core, re�er to CTU CAN FD

Datasheet ([2]) for such information. This document alogn with CTU CAN FD Datasheet ([2]) serves as reference on

how shall CTU CAN FD function, and it is supposed to be used as veri�cation reference on how shall the device behave.

1.2 Development tools

To develop CTU CAN FD following tools are used:

� NVC for digital simulations.

� Quartus Prime and Xilinx Vivado for Synthesis to Intel and Xilinx FPGAs, Timing analysis and design size bench-

marks.

� VUnit for simulation wrappers.

� Kactus2 for de�nition of register map in IP-XACT format.

� LYX to write documentation.

� GitLab of CTU FEE and Github to host source code GIT repository.

� Wavedrom for Timing Diagrams.

� Python for scripting.

1.3 Design automation

Part of CTU CAN FD Core is auto-generated. Register map is implemented in Kactus 2 in IP-XACT format (�spec/

CTU/ip/CAN_FD_IP_Core/2.1/CAN_FD_IP_Core.2.1.xml�). The design in IP-XACT format is uni�ed speci�cation

of user-interface. Following resources are generated from IP-XACT speci�cation:

� VHDL packages with address, bit-�elds and reset values de�nitions

(�src/lib/can_fd_frame_format.vhd�, �src/lib/can_fd_register_map.vhd�).

2
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� C header �le with address map de�nitions and register descriptions

(�driver/ctu_can_fd_regs.h�, �driver/ctu_can_fd_frame.h�).

� Lyx documentation of register map. Re�er to [2].

� RTL Code of Control Registers module (�src/memory_registers/generated/*).

� Documentation of RTL module interfaces (�doc/core/entity_docs�).

To generate these design materials CTU CAN FD IP Core uses IP-XACT register map generator which is accessible at

regmap_gen. Register map generator is linked as sub-module of CTU CAN FD repository. Clone all the submodules

recursively before using register map generator. All of the generated �les are considered as don't touch. Part of this

document is also auto-generated. Each section which describes list of Generics and Signals of a module is generated from

VHDL RTL code.

1.3.1 Register map generation

When CTU CAN FD GIT repository is clonned, register map can be generated by following script:

cd scripts
./update_reg_map

1.3.2 Xilinx Vivado component

CTU CAN FD contains Xilinx Vivado component (�src/component.xml�) for integration of CTU CAN FD to Xilinx based

FPGAs. Xilinx Vivado component is generated by following script:

cd scripts
python gen_vivado_component.py

1.4 General coding guidlines

RTL code within CTU CAN FD has following coding rules:

� Underscore is always used to separate words within signal/entity/process/variable/port/generic names (e.g. tx_hw_cmd,

can_core).

� Constants are written by capital letters with �C_� pre�x (e.g. C_SUSPEND_DURATION).

� Generics are written by capital letters with �G_� pre�x (e.g. G_RX_BUFF_SIZE). This rule has an exception on

top level interface and wrappers of CTU CAN FD (can_top_level, can_top_ahb).

� Signals are always commented on line before the signal. This must be especially true for port signals. This allows

to extract documentation of VHDL entities from RTL code.

� Sections of signals can be de�ned by surrounding section name by whole line of �-� characters.

� All RTL codes are indented with 4 spaces.

� Line length shall be limited to 80 characters.

� Instance names are su�xed with �_inst�, process names are su�xed with �_proc�, cover point names are su�xed

with �_cov�, assertion names are su�xed with �_asrt�. DFF names can be su�xed by �_d/_q� depending on

whether it is DFF input/output.

3
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1.5 Source code access

CTU CAN FD IP Core source code is available in CTU FEE GitLab repository at:

https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

1.6 ISO11898-1 2015 compliance

CTU CAN FD is compliant with [1]. With regards to this document, CTU CAN FD supports all implementation options

(Classical CAN, CAN FD Tolerant, CAN FD enabled). Compliance to each of these options can be con�gured via a

register (run-time con�gurable). Re�er to [2] for description of CTU CAN FD con�guration.

Support of optional features from [1] is described in Table 1.1 and Table 1.2.

4
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Table 1.1: ISO11989-1 optional features (1)

Feature Name Status Notes
FD Frame format Supported
Disabling of frame
formats

Supported Reception of CAN FD frames can be disabled by setting MODE[FDE] = '0'.

Limited LLC
frames

Not
Supported

Only full size (64 byte) frames are supported.

No transmission of
frames including
padding bytes

Not
Supported

No padding is inserted since full sized frames are supported.

LLC Abort
Interface

Supported Issuing Set abort command to TXT bu�er which is used for transmission is
equal to issuing LData.Abort_Request / LRemote.Abort_Request primitive.

ESI and BRS
values

Supported BRS value can be speci�ed for each transmitted CAN frame. ESI value can't
be speci�ed for transmitted CAN frames, it is always derived from current
Fault con�nement state of CTU CAN FD. ESI value can be read for each
received frame.

Method to provide
MAC data
consistency

Partially
Supported

CTU CAN FD implements TXT bu�er RAMs which stores whole CAN frame
for transmission before the transmission is started. This corresponds to: �The
MAC sub-layer shall store the whole message to be transmitted in a
temporary bu�er that is �lled before the transmission is started.� Additionally,
CTU CAN FD implements parity protection on each word of TXT bu�er and
RX bu�er if sup_parity=true.

Time and time
triggering

Partially
Supported

Time triggerred transmission is available in TX Arbitrator module. CTU CAN
FD does not support time base by itself, it is left up to integrator to provide
Time base via timestamp input. The reason for this, is to share single Time
base between multiple instances of CTU CAN FD. timestamp input is
readable from CTU CAN FD. No event generation is provided from
timestamp input.

Time stamping Supported Timestamping of RX frames is supported in SOF or EOF bit. Time Base
counter must be provided by integrator and must be connected to
timestamp input.

Bus Monitoring
mode

Supported Supported via MODE[LOM].

Handle Supported Handle corresponds to TXT bu�er.
Restricted
operation

Supported Supported via MODE[ROM].

Separate
prescalers for
Nominal and Data
Bit Rate

Supported Prescalers are separate in BTR[BRP] and BTR_FD[BRP_FD] registers.
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1. GENERAL INFORMATION

Table 1.2: ISO11989-1 optional features (1)

Feature Name Status Notes
Disabling of
automatic
retransmission

Supported Supported via SETTINGS[RTRLE] and
SETTINGS[RTRTH] registers.

Maximum number
of retransmissions

Supported

Disabling of
protocol exception
event on res bit
detected recessive

Supported Protocol exception is con�gurable via SETTINGS[PEX] register.

PCS_Status Supported CTU CAN FD supports both nominal and data bit rate.
Edge �ltering
during the bus
integration state

Not
Supported

Time resolution
for SSP placement

Not
Supported

Secondary sample point position is always given in minimum time quanta
regardless of bit rate prescaler seettings.

FD_T/R message Supported
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2. Interfaces

2.1 Memory Bus

CTU CAN FD is a slave device accessible via one of three memory buses:

� RAM-like interface

� APB

� AHB

Each interface can be used via dedicated wrapper. SW shall not access CTU CAN FD sooner than two clock cycles

after external reset was released (due to reset synchronisation) (see Table 3.1). If CTU CAN FD is accessed earlier,

writes accesses have no e�ect and read accesses return zeroes. If external reset is executed via SW driver (e.g. at driver

load time), it is recomended to add corresponding delay before driver executes any access to the device (e.g. via usleep,

nanosleep, dummy NOPs, or similar mechanism).

2.1.1 RAM-like interface

Wrapper can_top_level.vhd

RAM-like interface is the default interface of CTU CAN FD with signals shown in Table 2.1. A typical read/write tran-

scations on RAM-like interface are shown in Figure 2.1. Note that RAM-like interface does not contain any Ready/ACK

signal. CTU CAN FD is always able to process written data in one clock cycle (write access) and return read data in the

next clock cycle (read access). Accesses on RAM-like interface shall be 4 byte aligned (lower 2 bits of address shall be

equal to 0). If access is not 4 byte aligned, lower 2 bits of address are ignored. Therefore, single access spaning more

than 1 32 bit memory word is not possible. Each byte is separately writable and readable via byte enable (sbe), therefore
8-bit and 16-bit accesses are supported. If sbe signal is zero, data on corresponding byte are not written during write

access, and zeroes are returned during read access. CTU CAN FD is little endian oriented (LSB = Lowest Adress ->

sbe(0) = Byte 0 = data_in/out (7:0); sbe (3) = Byte 3 = data_in/out(31:24)).

RAM-like interface supports burst read from RX bu�er (see 4.2). In such case, address input must be equal to RX_DATA
register address during whole read operation (�stationary�/�frozen� burst). During such read, each word must be read by

32-bit access (sbe=�1111�). This means that read from RX bu�er is always executed by 32-bit word regardless of sbe
value. Such a situation is shown in Figure 2.2.
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Table 2.1: RAM-like interface

Signal Name Direction Width Description
data_in in 32 Write Data
address in 16 Address
scs in 1 Chip Select
srd in 1 Read indication
swr in 1 Write indication
sbe in 4 Byte enable (applicable for both reads and writes)
data_out out 32 Read data

        Write access                                  Read access                      Read after Write                   Write after Read

clk_sys

scs

swr

srd

sbe BE 0 BE 1 BE 2 BE 0 BE 1 BE 2 BE 1 BE 2 BE 1 BE 2

address 0000 0004 0008 0000 0004 0008 0004 0008 0004 0008

data_in Data 0 Data 4 Data 8 Data 4 Data 8

data_out Data 0 Data 4 Data 8 Data 8 Data 4

Figure 2.1: RAM-like interface

clk_sys

scs

swr

srd

sbe 1111 1111 1111 1111 1111 1111 1111 1111

address RX_DATA RX_DATA RX_DATA RX_DATA RX_DATA RX_DATA RX_DATA RX_DATA

data_out Data Word 1 Data Word 2 Data Word 3 Data Word 4 Data Word 5 Data Word 6 Data Word 7 Data Word 8

Figure 2.2: RX bu�er burst read

RAM-like interface is Avalon compatible (according to [3]) and mapping of RAM like signals to Avalon Memory-mapped

slave signals is shown in Table 2.2. When connected to Avalon MM master, write access to reserved address has no

e�ect and read access returns all zeroes instead of responding with DECODEERROR response. response signal shall be

connected to �00�, writeresponsevalid and readdatavalid shall be connected to '1'.

2.1.2 APB

Wrapper can_top_apb.vhd

APB Wrapper is compatible with [4]. Signals of CTU CAN FD on APB interface are shown in Table 2.3. Every access

on APB Interface lasts two clock cycles, APB does not support bursts. CTU CAN FD never stalls on APB interface via
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Table 2.2: RAM-like to Avalon mapping

RAM-like signal
name

Avalon signal
name

Description

data_in write_data Data written to Avalon MM slave.
address address Address for read/write of Avalon MM slave.
scs - Shall correspond to chip select of slave if more than 1 slave is connected

to given bus. If single slave is connected, shall be connected to 1.
srd read Read indication
swr write Write indication
sbe byteenable Byte enable, used for both read and write transfers.
data_out readdata Data read from Avalon MM slave.

s_apb_pready , it keeps s_apb_pready always high. CTU CAN FD does not return error via s_apb_pslverr on

any access. If SW executes access to an invalid location within CTU CAN FD, it is simply ignored. This allows dumping

whole CTU CAN FD memory space without memory access errors. Accesses on APB Interface shall be 4 byte aligned. If

access is not 4 byte aligned, lowest 2 bits of address are ignored. 8/16 bit write accesses are supported via write strobe

signal (s_apb_pstrb). Basic accesses on APB are shown in Figure 2.3.

Table 2.3: APB interface

Signal Name Direction Width Description
s_apb_paddr in 32 Address
s_apb_penable in 1 Enable. Indicates second cycle of access.
s_apb_prot in 3 Protection type. Ignored by CTU CAN FD. All access types

are treated equally by CTU CAN FD.
s_apb_prdata out 32 Read data.
s_apb_pready out 1 Ready. Always asserted.
s_apb_psel in 1 Slave select.
s_apb_pslverr out 1 Access error. CTU CAN FD always drives this pin low.
s_apb_pstrb in 4 Write Strobe. During write access, logic 1 indicates according

byte will be written. Ignored during read access.
s_apb_pwdata in 32 Write data.
s_apb_pwrite in 1 Access direction.
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8/16/32 bit Write access                                         Read accesses     

aclk

psel

pwrite

penable

pstrb 0001 0011 1111 0000

paddr 0000 0004 0008 0000 0004 0008

pwdata Data 0 Data 4 Data 8

prdata Data 0 Data 4 Data 8

Figure 2.3: APB Interface access

2.1.3 AHB

Wrapper CAN_top_ahb.vhd

AHB Wrapper is compatible with [8]. Signals of CTU CAN FD on AHB interface are shown in Table 2.4. CTU CAN

FD accepts all transfer types (Non-sequential, Sequential, Idle, Busy) on AHB bus. CTU CAN FD treats burst accesses

equally as regular accesses (no internal caching is done). If read transfer occurs after write transfer (directly one after

another), CTU CAN FD inserts one wait cycle into AHB transaction, as is shown in Figure 2.4. CTU CAN FD does not

return error via hresp on any accesses. If SW executes access to an invalid location within CTU CAN FD, it is simply

ignored. This allows dumping whole CTU CAN FD memory space without memory access errors. CTU CAN FD does

not support unaligned accesses on AHB Bus. Each access shall be aligned to its own size (8-bit access can have arbitrary

address, 16 bit access must have address 2-byte aligned, 32-bit access must have address 4-byte aligned). No locked

sequences (hmastlock) are supported by CTU CAN FD.

Table 2.4: AHB interface

Signal Name Direction Width Description
haddr in 32 Address
hwdata in 32 Write Data
hsel in 1 Write select
hwrite in 1 Access direction
hsize in 3 Access size. (8/16/32 bit access sizes are supported).
hburst in 3 Burst indication, ignored by CTU CAN FD.
hprot in 3 Protection type, ignored by CTU CAN FD.
htrans in 2 Transaction type.
hmastlock in 1 Locked sequence indication.
hready in 1 Ready indication.
hreadyout out 1 Ready indication output.
hresp out 1 Response type.
hrdata out 32 Read data.
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8/16/32 bit Write access                Read after Write                            8/16/32 bit Read accesses

hclk

hsel

hwrite

hready

hsize 000 001 010 010 010 000 001 010

haddr 0001 0002 0004 0000 0004 0001 0002 0004

hwdata Data 1 Data 2 Data 4 Data 0

hrdata Data 4 Data 1 Data 2 Data 4

Figure 2.4: AHB Interface access

2.1.4 Limitations on 8/16 bit buses

CTU CAN FD is 32-bit peripheral, however, it is possible to integrate it to systems with 8/16 bit bus thanks to �byte

enable� capabilities of each bus interface wrapper. If SW accesses CTU CAN FD via 8/16 bit bus, access to simple 32-bit

R/W register can be split into 4/2 consecutive accesses without a�ecting the functionality. However, due to side-e�ects

on several registers, there are following limitations when accessing CTU CAN FD from 8/16 bit buses:

� CTU CAN FD must be used in RX bu�er manual mode (MODE[RXBAM] = 0). This is necessary since read of

single word from RX bu�er can not be done by single read access to RX_DATA register. On 8 bit systems, it will

require 4 reads (addresses RX_DATA .. RX_DATA + 0x3), on 16 bit systems it will require 2 reads (addresses

RX_DATA and RX_DATA + 0x2). Since each read from RX_DATA register in RX bu�er automated mode

(MODE[RXBAM] = 1), will move RX bu�er read pointer, the rest of the memory word would be lost without

being read out. Thus it would be impossible to correctly read out received frames. Reading out RX bu�er on

8/16 bit systems thus requires operation in MODE[RXBAM] = 0 and manually moving RX bu�er read pointer by

COMMAND[RXRPMV] bit.

� On 8 bit systems, TX_PRIORITY register is only able to change priority of TXT bu�ers atomically if number

of TXT bu�ers is 2. On 16 bit systems, TX_PRIORITY register is only able to change priority of TXT bu�ers

atomically, if number of TXT bu�ers is 2-4. Atomic change of TXT bu�er priorities is required if TXT bu�ers are

used like a FIFOs by priority rotation (such approach is used by CTU CAN FD Linux driver). Thus, if TXT bu�er

priorities need to be rotated atomically, following restrictions apply:

� On 8 bit systems, only 2 TXT bu�ers must be used.

� On 16 bit systems, only up to 4 TXT bu�ers must be used.

� If atomic rotation of priorities is not required, number of TXT bu�ers is not restricted.

2.2 CAN Bus

CTU CAN FD interfaces to physical layer transceiver via can_rx and can_tx pins. can_rx input is assumed to be

asynchronous to System clock (see 2.4) and it is treated like asynchronous signal. can_tx output is synchronous to

System clock. can_tx output is glitch-free during operation on CAN bus as long as MODE[LOM] bit is not changed.
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2.3 Timestamp

CTU CAN FD interfaces to system level Time base via timestamp input. timestamp input is assumed to be synchronous

to System clock, and therefore there is no resynchronization on this input. If timestamp is unused (no Timestamping /

Time Triggering capability), it shall be driven to 0xFFFF FFFF FFFF FFFF. If timestamp is used, it shall be driven by

unsigned up-counting counter which measures �ow of time within a system to which CTU CAN FD is being integrated.

timestamp does not need to be incremented every clock cycle of System clock, nor there is a constraint on step that it

is incremented with, it only needs to be synchronous to System clock. If system level time counter has lower width than

64 bits, integrating system shall connect such counter to lower bits of timestamp input, and drive unused high bits to

zero. Integrating system shall also set active_timestamp_bits to width of such counter - 1 (e.g. when system has 32

bit timestamp, it shall be connected to timestamp[31:0] and active_timestamp_bits=31).

2.4 Clock and reset

CTU CAN FD is clocked via single clock input which represents System clock domain. Name of clock signal is di�erent

depending on used memory bus wrapper as is shown in Table 2.5. CTU CAN FD has single external reset which is treated

as asynchronous reset, and it is internally synchronized by reset synchronizer (see 3.3). Note that AHB bus speci�cations

requires hresetn to be synchronous to hclk . CTU CAN FD implemenation is more relaxed, and does not require these

signals to be synchronous to hclk (System clock), since it handles reset synchronisation internally. res_n_out signal

output contains synchronized version of res_n/arstn/hresetn input. It can be left unconnected, or it can be used as

an indication that reset has been completed and CTU CAN FD can be accessed on its memory bus.

Table 2.5: Clock signal names

Bus type Clock signal name Reset signal name
RAM-like sys_clk res_n
APB aclk arstn
AHB hclk hresetn

2.5 Test probe

CTU CAN FD contains test_probe record output. This signal is used by CTU CAN FD test-bench to peek inside

the design of CTU CAN FD. When integrating CTU CAN FD, this output can remain un-connected. Re�er to [8] for

description of how to connect test-probe if integrating CTU CAN FD VIP. This signal has no e�ect on design functionality,

and it can remain unconnected in design to which CTU CAN FD is integrated.

2.6 Scan enable

CTU CAN FD design is DFT insertion friendly. When scan_enable = 1, CTU CAN FD is in scan mode. In scan mode,

the following is valid:

� All hand-instantiated clock gates in CTU CAN FD are un-gated (to make sure that scan chain is always clocked).

� All resets which depend on value of other �ip-�ops are gated (to avoid reseting part of scan chain during scan

operation).
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scan_enable input shall be controlled by SoC level DFT controller, and it shall be connected to the same signal which

enables scan mode on inserted scan �ip-�ops. If CTU CAN FD is used in FPGA (target_technology = 1), scan_enable
shall be tied low. scan_enable signal shall be driven synchronous to System clock.

2.7 Con�guration options

CTU CAN FD is con�gurable on top level interface via VHDL generics which are explained in Table 2.6.

Table 2.6: CTU CAN FD generic parameters

Name Type Default Range Description
rx_buf_size natural 128 32-4096 Size of RX bu�er RAM in 32 bit words. See 4.2.
txt_bu�er_count natural 4 2-8 Number of TXT bu�ers. See 4.4.
sup_�lt_A boolean true true/false Synthesize �lter A. See 4.3.
sup_�lt_B boolean true true/false Synthesize �lter B. See 4.3.
sup_�lt_C boolean true true/false Synthesize �lter C. See 4.3.
sup_range boolean true true/false Synthesize range �lter. See 4.3.
sup_tra�c_counters boolean true true/false Synthesize tra�c counters. See 4.1.8.
target_technology natural 1 0-1 Target technology (set 0 for ASIC, set 1 for FPGA).
sup_test_registers boolean true true/false Synthesize test registers.
sup_parity boolean false true/false Add parity protection to TXT bu�ers / RX bu�er.
reset_bu�er_rams boolean false true/false When true, TXT bu�er and RX bu�er RAMs are reset

by res_n.
active_timestamp_bits integer 63 0-63 Number of active timestamp bits minus - 1.
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3. System architecture

3.1 Block diagram

Detailed block diagram of CTU CAN FD IP Core is shown in Figure 3.1.
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Figure 3.1: CTU CAN FD - Detailed block diagram

3.2 Reset architecture

CTU CAN FD IP Core can be reset by two means: External reset and Soft Reset. Both reset sources are described

in Table 3.1. Both reset cause assertion of internal System reset which resets whole CTU CAN FD including Memory

registers. Reset architecture is shown in Figure 3.2. An example of reset sequence by both External and Soft reset are

shown in Figure 3.3. Note that all DFFs in Figure 3.2 are clocked by System clock.
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Table 3.1: Reset description

Reset Name Asserted by Reset description

External Reset
RAM like interface:
res_n = 0.

To be used by HW reset structure integrating CTU CAN FD
(e.g. POR, System level reset controller). CTU CAN FD shall
not be accessed for two System clock periods after External
reset was de-asserted (or until res_n_out = 1). Asserting
External reset does not require System clock to be running.
De-asserting reset requires System clock to be running.

AHB interface:
hresetn = 0.
APB interface:
aresetn = 0.

Soft Reset Writing MODE[RST] = '1'. To be used by SW for resetting CTU CAN FD. System clock
must be running when this reset is asserted (needed for Bus
access and pipeline DFF).

External
Reset

res_sync

Memory registers

Synchronised
Reset

Memory
Bus

System
Reset

Soft
Reset

D Q

CLR

D Q

CLR

D Q
CLR

Figure 3.2: Reset structure

System clock

External reset

Soft reset

System reset

Assert De-assert

Assert De-assert

a c

e g

b d f h

Figure 3.3: Reset operation

3.3 Clock architecture

CTU CAN FD IP Core contains one clock domain: System clock. There are no divided clocks in CTU CAN FD, thus

no �generated clocks� are needed when writing SDC constraints. All timing related information (e.g. time quanta) are

derived from System clock via clock enable signals. This makes CTU CAN FD fully synchronous design with no clock

domain crossing.

CTU CAN FD is assumed to be implemented in a single power domain, all parts of CTU CAN FD must be either turned

on or o�. To reduce dynamic power consumption, majority of registers are written to allow usage of �clock enables�

(FPGAs) or inferred �clock gating� (ASIC).
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If target_technology = 0 (ASIC), hand-written clock gating is implemented for Memory registers, RX bu�er RAM

and TXT bu�er RAMs. If target_technology = 1 (FPGA), no hand-written clock gating is implemented, clocks for

memory registers RX bu�er RAMs , and TXT bu�er RAMs are always enabled. There is no functional di�erence between

ASIC/FPGA target technology (even if clocks are always enabled, registers are wrriten only when enabled).

The manually used clock gating cell (clk_gate.vhd) has Latch + AND type. It is recommended to replace clk_gate with

with Integrated clock gating cell by rewriting content of clk_gate.vhd.

If target_technology = 1 (FPGA), then clk_gate.vhd does not gate clocks, but only connects input clock to output

clock.

If CTU CAN FD is implemented in SoC system, it is recommended to implement con�gurable clock gating for whole

CTU CAN FD peripheral on system level to save power when CTU CAN FD is not clocked. In such situation, CTU CAN

FD ignores tra�c on CAN Bus, and continously transmitts recessive bits to CAN Bus.

3.4 Testability

CTU CAN FD contains following features for manufacturing testability:

1. Memory testability - Allows direct read/write access to TXT bu�er RAMs and RX bu�er RAM. This approach is

supported only when Test registers memory region is synthesized (sup_test_registers = true). It is recommended

to synthesize Test registers only for ASIC implementations (target_technology = 0). Enabling Test registers for

FPGA implementations is usefull only to test parity protection of RX / TXT bu�er RAMs, since access from Test

Registers bypasses parity encoding mechanism.

2. Scan mode (via scan_enable input) - In scan mode, all clock gates are enabled, and all reset signals which depend

on other signals (generated reset) are gated.

3.4.1 Memory testability

Each memory within CTU CAN FD can be tested at production via Test Registers (e.g. executing SW driven march

pattern test). Any data can be written to any address inside each memory. Memory testability is available only in Test

Mode (MODE[TSTM] = 1). If CTU CAN FD is not in Test mode, accesses to whole Test registers block are ignored.

Memory testability has its own �enable� bit (TSTCTRL[TMENA]), which must be set to enable memory testing via Test

Registers. An example of memory testing is shown in Table 3.2. Note that this test sequence is only an example. Since

Test registers provide independed Read/Write functionality to arbitrary addresses, any known testing approach can be

used (any address step, direction or data pattern can be used).

3.5 Sequential logic

CTU CAN FD logic is implemented from DFFs with asynchronous reset.

TXT bu�er and RX bu�er RAMs (see 3.7) are by default implemented from DFFs. All DFFs are active on positive clock

edge. CTU CAN FD is latch free (apart from latches within clock gate cells). These facts can be used as a sanity check

that there should be no DFFs without Set and Reset within CTU CAN FD after synthesis (apart from TXT bu�er / RX

bu�er RAMs, if they are synthesized, not inferred, nor replaced by Hard RAM macros).
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Table 3.2: Memory testing example

Step Action
1 Set MODE[TSTM] = 1 and TSTCTRL[TMENA] = 1. This enables memory testing.
2 Con�gure target memory to be tested in TST_DEST[TST_MTGT] register. Set

TST_DEST[TST_ADDR] = 0 (initial address).
3 Write test pattern to TST_WDATA register. It is up to user to choose test pattern.
4 Execute write to the memory by writing TSTCTRL[TWRSTB] = 1. Note that TSTCTRL[TMAENA]

must remain set.
5 Increment address in TST_DEST[TST_ADDR]. If this is last address within tested memory, then go to

Step 6. Otherwise go to Step 3.
6 Set TST_DEST[TST_ADDR] = 0 (initial address).
7 Wait for 1 System clock clock cycle (read from RAMs is pipelined).
8 Read value from TST_RDATA. Check that value read from this register matches what has been written

TST_WDATA register in Step 3. If value does not match, test fails.
9 Increment address in TST_DEST[TST_ADDR]. If this is last address within tested memory, then go to

Step 10. Otherwise go to Step 7.
10 Test is successfull.

3.6 Resynchronisers

Resynchronisers within CTU CAN FD IP Core are listed in Table 3.3.

Table 3.3: Resynchronisers

Resynchroniser function Resynchroniser Type Resynchroniser path
Resynchronisation of External Reset Reset Synchroniser can_top_level\rst_sync_inst
Resynchronisation of CAN RX Data
Stream

Signal Synchroniser can_top_level\ bus_sampling_inst\
can_rx_sig_sync_inst

3.7 Memories

CTU CAN FD contains memories which are used to store CAN FD frames. These memories are parts of RX bu�er and

TXT bu�ers (see 4.2 and 4.4). List of memories is shown in Table 3.4. The TXT bu�ers and RX bu�ers can be either

with or without reset:

� If reset_bu�er_rams = false, TXT bu�er RAMs and RX bu�er RAM are not reset.

� The memories initialize to X.

� On FPGA, SRAM / BRAM blocks are inferred.

� On ASIC, DFT insertion may be complicated since DFFs of TXT bu�er and RX bu�er RAM are not control-

lable.

� ASIC fault-coverage can be achieved by functional test via Test Registers.

� If reset_bu�er_rams = true, TXT bu�er RAMs and RX bu�er RAM are reset.

� The memories initialize to 0.

� On FPGA, SRAM / BRAM blocks will not be inferred.
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� On ASIC, DFT insertion is easy since DFFs of TXT bu�er and RX bu�er are as any other registers.

� ASIC fault coverage can be achieved by DFT + ATPG, no need to synthesize Test Registers.

When integrating CTU CAN FD to ASIC, integrator can either replace these memories by hard macros, or leave memory

implementation to synthesis tool. In such case, memory is synthesized from DFFs.

Each memory is synchronous memory with one clock cycle latency on data read, and one cycle write access latency. Both

memories are dual port memories with write-only port A, read-only port B, and the same clock signal is used to clock

both ports. If true dual port memories are used, write data/enable of Port B shall be driven to 0. Memory word width

is 32 bits, and it must support byte-enable capability. An example of memory access is shown in Figure 3.4. In case of

read during write, memories return old data value, there is no �bypassing� implemented.

Table 3.4: RAM memories

Memory
location

Write
mask

Instance Name Instances Depth Word
Width

Address
size

Port A
Access

Port B
Access

Read

RX
bu�er
RAM

No rx_bu�er_ram 1 32-
4096

32 5-12 CAN
Core

Memory
Regis-
ters

Synchronous

TXT
bu�er
RAM

No txt_bu�er_ram 2-8 20 32 5 Memory
regis-
ters

CAN
Core

Synchronous

System clock

Port A Address 1

Port A Data (write) AA55AA55

Port A Write

Memory content AA55AA55

Port B Address 1

Port B Data (read) AA55AA55

Figure 3.4: Dual port memories access

3.8 Pipeline architecture and triggers

Processing of data on CAN bus in CTU CAN FD is pipelined into three stages which are described in Table 3.5. This

architecture meets maximal information processing time when System clock is equal to time quanta (prescaler is 1).

Since processing takes two clock periods information processing time of CTU CAN FD is 2. Due to this, minimum time

quanta of CTU CAN FD is 1.

Each stage of pipeline processing is controlled by a trigger signal which is active for one clock cycle. Trigger signals are

used to synchronise data transfer in exact moments to meet bit timing requirements on CAN Bus. Trigger signals are

used as clock enable signals for DFF which processes data in according pipeline stage. If a trigger signal is inactive,

processed data remain on DFF output and keep their previous value (data after bit destu�ng (RX) and bit stu�ng

(TX)). An example of pipeline processing is shown in Figure 3.5. Note that Process pipeline stage always occurs one
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clock cycle after Destu� pipeline stage. Between Process and Stu� pipeline stage there will be number of clock cycles

where no data are processed. This gap corresponds to TSEG2 (see 4.7.1 for de�nition of TSEG2).

                   Sample point                                  Transmitt next bit             

System clock

can_rx Bit N Bit N + 1

can_tx Bit N Bit N + 1

Destuffed data (RX) Bit N - 1 Bit N

Pre bit-stuffing data (TX) Bit N Bit N + 1

Pipeline stage Destuff Process Stuff

RX Trigger 0

RX Trigger 1

TX Trigger

Bit time segment TSEG1 TSEG2 TSEG1

Destuff

Process

Stuff

a c

e

i

f

g

b d

Figure 3.5: Datapath pipeline processing

In case of negative resynchronisation, length of TSEG2 can be shortened to less then 2 clock cycles. In such case,

following TX Trigger signal is throttled by one clock cycle and overall length of bit remains una�ected. Such situation is

further described in 4.7.7. A high level algorithm for processing of data on CAN bus is described in Table 3.7.

Table 3.5: Pipeline stages

Index Pipeline
stage

Trigger signal Corresponding
moment on CAN
Bus

Modules which process
data in this pipeline
stage

Description

1 Destu� RX Trigger (0) Sample point Bus Sampling, Bit
Destu�ng

Stu� Bits are removed
from can_rx and
destu�ed data are
provided to Protocol
control.

2 Process RX Trigger (1) One clock cycle
after Sample
point

Protocol Control Destu�ed data are
processed by Protocol
control, value of
following transmitted
bit is determined and
provided as TX data
before bit stu�nh.

3 Stu� TX Trigger Start of Bit time Bit Stu�ng Stu� bit is inserted to
TX data before bit
stu�ng and propagated
to can_tx .
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Table 3.7: Pipeline stages - algorithm

Step Step Description Pipeline
Stage

Module

1 can_rx input is synchronised to System clock domain. Delay imposed by
synchronisation is treated as wire delay and it is ignored.

-

2 Bus value is sampled to save information about previous sampled bus
value for next edge detection. Synchronisation edges are detected on
can_rx and propagated to Prescaler. can_rx value is propagated to Bit
Destu�ng module.

Destu� Bus Sampling

3 Bit de-stu�ng is performed in Sample point, and destu�ed data are
provided on output of Bit Destu�ng module.

Destu� Bit Destu�ng

4 CRC from RX bit value with stu� bits included (can_rx) is calculated. Destu� CAN CRC
5 Destu�ed data are sampled by Protocol control, RX shift register is

shifted, TX shift register is preloaded by following bit to be transmitted,
Protocol control FSM state is updated.

Process Protocol Control

6 CRC from destu�ed data is calculated. Process CAN CRC
7 Stu� bits are inserted to TX bit value on output of TX shift register by

Bit Stu�ng module. Value on output of Bit Stu�ng module is
propagated to can_tx output.

Stu� Bit Stu�ng

8 TX shift register is shifted. Stu� Protocol Control
9 CRC from output of TX shift register (TX data before bit stu�ng) is

calculated.
Stu� CAN CRC

10 CRC from TX data with bit stu�ng is calculated. As this stage does not
a�ect data transmitted on the bus in the actual bit, it is not considered as
separate pipeline stage.

Stu� + 1
clock cycle

CAN CRC

3.9 CAN Frame metadata

Through this document, term �CAN frame metadata� is used to describe information shown in Table 3.8. In TXT bu�ers

and RX bu�er, metadata are stored in Frame Format word as is shown in Chapter 4 of [2].

3.10 CAN Frame format

CAN frame spans multiple 32-bit words in TXT bu�ers and within RX bu�er RAMs (see 4.4 and 4.2). One TXT bu�er

always contains single frame. RX bu�er contains multiple frames one after another in a RX bu�er RAM. Format of CAN

frame within these memories is the same with following exceptions:

� ESI bit in TXT bu�er has no meaning while in RX bu�er ESI has value of received ESI bit on CAN bus

� RWCNT �eld in TXT bu�er has no meaning while in RX bu�er it contains number of words that current frame

takes in RX bu�er without Frame Format word).

� FRAME_TEST_W word is available only in TXT bu�er RAM, not in RX bu�er RAM.

Meaning of memory words within CAN frame is described in Table 3.9. Meaning of individual bits can be found in

Chapter 5 of [2].
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Table 3.8: CAN frame metadata

Name Abbreviation Possible values Description
Identi�er type ID_TYPE BASE (0), EXTENDED

(1)
Distiguishes frames with base identi�er (BASE)
only and frames with identi�er extension
(EXTENDED).

Frame type FR_TYPE NORMAL_CAN (0),
FD_CAN (1)

Distiguishes CAN 2.0 frames and CAN FD frames.

Remote
Transmission
Request

RTR NO_RTR_FRAME
(0), RTR_FRAME (1)

Distinguishes between Data Frame and Remote
frame. When frame is CAN FD frame, RTR bit
has no meaning.

Bit Rate Shift �ag BRS BR_NO_SHIFT (0),
BR_SHIFT (1)

Distinguishes if bit rate will be shifted in CAN FD
frame or not. This bit has no meaning in CAN 2.0
frames.

Error State
Indicator

ESI ESI_ERR_ACTIVE
(0),
ESI_ERR_PASSIVE
(1)

Value of received ESI bit. This bit has no meaning
in CAN 2.0 frames. This bit has no meaning in
TXT bu�ers. Value of transmitted ESI bit is
always given by actual Fault con�nement state.

Data length code DLC 0 - 15 as de�ned in [1] Data length code determines length of data �eld
within CAN frame.

Table 3.9: CAN frame format - memory words

Name of memory
word

Name in register
map (see [2])

Description

Frame Format FRAME_FORM_W Contains CAN frame metadata and additional per-frame information.
Identi�er IDENTIFIER_W Contains base identi�er base and identi�er extension.
Timestamp Low TIMESTAMP_L_W Contains lower 32-bits of CAN frame Timestamp (in RX bu�er as

sampled during frame reception, in TXT bu�er as inserted by user).
Timestamp High TIMESTAMP_U_W Contains upper 32-bits of CAN frame Timestamp (in RX bu�er as

sampled during frame reception, in TXT bu�er as inserted by user).
Data words DATA_X_Y_W Contain CAN frame data payload transmitted/received during data

frame �eld.
Frame Test FRAME_TEST_W Contains metadata for intentional corruption of transmitted CAN

frames.

3.11 Test mode

CTU CAN FD is in Test mode when MODE[TSTM] = '1'. Features of test mode are listed in Table 3.10.
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Table 3.10: Test mode features

Relevant
register

Description

CTR_PRES CTR_PRES is writable and allows setting values of transmitt error counter, receive error counter,
nominal error counter and data error counter.

EWL EWL register is read-write therefore Error warning limit is con�gurable by SW.
ERP ERP register is read-write and Error passive threshold is con�gurable by SW. When either

transmitt error counter or receive error counter reaches Error Passive threshold, unit becomes
error passive.

TST_CONTROL,
TST_DEST,
TST_WDATA,
TST_RDATA

Test registers are writable, therefore it is possible to directly read/write RX bu�er RAM and TXT
bu�er RAMs. This feature is available only when sup_test_registers = true.

FRAME_TEST_WCTU CAN FD uses bits in FRAME_TEST_W to intentionally corrupt transmitted CAN frames.

3.12 Integration vs. Reintegration

In this document term �Integration� means attempt to detect 11 consecutive recessive bits after logic 1 was written to

SETTINGS[ENA] (CTU CAN FD was turned on). Term �Reintegration� means attempt to detect 129 ocurrences of 11

consecutive recessive bits after node went bus o� and logic 1 was written to COMMAND[ERCRST] (SW Requests to

rejoin the bus).
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4. Sub-blocks architecture

4.1 CAN Core

File: can_core.vhd

CAN core block diagram is shown in Figure 4.1. CAN core is structural entity that instantiates other modules and by

itself it implements nearly no logic. An exception to this rule are two multiplexers as shown in Figure 4.1. Multiplexor on

TX datapath (green color) multiplexes between transmitted data after bit stu�ng or constant recessive value. Constant

recessive value is sent to the bus in bus monitoring mode. Multiplexor on RX datapath (red color) multiplexes input data

to Bit destu�ng module. During normal operation, can_rx input is used. When secondary sample point is used, data

after bit stu�ng are taken (transmitted data are looped back to make sure that Protocol control FSM receives proper

value as real received value can be delayed by several bits). In bus monitoring mode, data afer bit stu�ng are logically

ORed with can_rx from input of CAN core (this corresponds to re-routing transmitted bit value internally as de�ned in

10.14 of [1]).
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Figure 4.1: CAN Core - Block diagram
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4.1.1 Protocol control

File: protocol_control.vhd

Protocol control diagram is shown in Figure 4.2. Protocol control is structural entity thah only instantiates other modules

and by itself it implements no logic.

protocol_control

protocol_control_fsm

control_counter

reintegration_counter

retransmitt_counter

tx_shift_register

rx_shift_register

error_detector

RX Data

TX Data

Store signals

Enable
Input Selector

RX Metadata
RX Data Word
RX Identifier

Clear

Load signals

Enable

Input Selector
Clear

RX Trigger

TX Trigger

RX CRC

CRC

RX Stuff
Count

Stuff Count

Error frame 
request

CRC Match Error Counters
Unchanged

CRC Source
Error Capture

CRC Check

Is Tran
sm

itte
r

TXT Buffer Word

TX Metadata

Is R
ece

iver

Is Id
le

Preload

Zero

Preload

Expired
Value

Byte Index

Counted
Byte

Preload

Limit Reached

TXT Buffer
Changed
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r A

ctive
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r P
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ff

Reception Valid
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Store Data
SOF Pulse

TXT Buffer Pointer

Frame valid

Transmission Valid

Sample Control

Error Detected

Primary Error

Error Delimiter
Late

Active Error,
Overload Flag

HW Command

Legend:
TXT Buffer Interface RX Buffer Interface

Figure 4.2: Protocol control - Block diagram
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Protocol control FSM

File: protocol_control_fsm.vhd

Protocol control FSM implements following functionality:

� Transmits and receives CAN frames.

� Controls Control counter, Retransmitt Counter, Re-integration counter.

� Controls TX Shift Register.

� Controls RX Shift Register. Storing values from RX Shift register to RX bu�er.

� Reads transmitted frame from TXT bu�er (addressing and reading data words from TXT bu�er).

� Stores received frame to RX bu�er.

� Controls measurement of transmitter delay.

� Controls TXT bu�ers and TX Arbitrator via HW Commands.

� Controls synchronisation (no synchronisation, hard synchronisation, resynchronisation)

� Controls bit rate switching (Nominal Sample, Data Sample, Secondary Sample).

� Performs form error detection.

� Evaluates results of CRC check.

� Handles arbitration.

Protocol control FSM state transition diagam is shown in Figure 4.3. Rules for Protocol control FSM state transitions

are described in Table 4.1. Protocol control FSM does not change its state in any other moment. The regular change of

Protocol control FSM state corresponding to e.g. transition from control �eld to data �eld occurs one clock cycle after

sample point (in Process pipeline stage).

Table 4.1: Protocol control state transition rules

Condition of state
transition

Pipeline stage when
transition occurs.

Description

Regular condition Process Transition corresponds to regular change of CAN frame �eld (e.g. stu�
count to CRC).

Error frame
request

One clock cycle
after Process

Transition corresponds to start of active error �ag or passive error �ag
and can occur from any state of Protocol control FSM.
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Figure 4.3: Protocol control FSM
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Control counter

File: control_counter.vhd

Control counter measures duration of CAN frame �elds which last longer than 1 bit. These �elds and according con-

�guration of Control counter are shown in Table 4.2. Control counter counts towards zero. It is decremented by 1 in

each bit of CAN frame �eld in Process pipeline stage. A current CAN frame �eld ends when Control counter is zero.

Control counter is not counting during CAN frame �elds which last only 1 bit (e.g. IDE bit), nor during �elds which

might last arbitrary number of bits (bus idle). An example of Control counter operation during base identi�er in CAN

frame is shown in Figure 4.4.

Table 4.2: Control counter

CAN Frame �eld Control counter preload value
Base identi�er 10
Identi�er extension 17
Data length code 3
Data Depends on transmitted / received data �eld length.
CRC 14, 16, 20 - depends on length of CRC sequence
Stu� count (+ Stu� parity) 3
End of Frame 7
Interframe space 2
Suspend transmission 7
Integration 10
Error �ag, overload �ag 5
Error delimiter, Overload delimiter 7
Re-integration 11, preloaded 129 times.

CAN frame field SOF Base Identifier SRR IDE

Control counter value 10 9 8 7 6 5 4 3 2 1 0

Figure 4.4: Control counter operation

Control counter module contains a complementary counter which counts from 0. Complementary counter is incremented

by 1 each bit time in Process pipeline stage and it counts only during data �eld. Complementary counter provides

information that data byte has elapsed (when counter mod 8 == 0), or whole memory word has elapsed (when counter

mod 32 == 0). Complementary counter addresses memory words between addresses 4 (DATA_1_4_W) and 19

(DATA_61_64_W) in TXT bu�er. Complementary counter decodes address of Data memory word within TXT bu�er

according to following equation:

Memory word index =
(
Control counter

32

)
+ 4

Control counter module implements Arbitration lost capture register. Arbitration lost capture register stores position

within CAN frame at which arbitration was lost. Arbitration lost capture register is loaded when arbitration lost is

signalled by Protocol Control FSM in Process pipeline stage. Arbitration lost capture saves current value of Control

counter (determines bit at which arbitration was lost) and bit �eld type within arbitration (base identi�er, IDE bit,

identi�er extension, etc.) when arbitration was lost. Arbitration lost capture register is readable by SW via ALC register.
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Meaning of values in Arbitration lost capture register is described in [2]. An example of Arbitration lost capture register

is shown in Figure 4.5.

CAN frame field SOF Base Identifier SRR IDE

Control counter value 10 9 8 7 6 5 4 3 2 1 0

Arbitration lost

ALC[ALC_BIT] 6

ALC[ALC_ID_FIELD] 00

Figure 4.5: Arbitration lost capture

Retransmitt counter

File: retransmitt_counter.vhd

Retransmitt counter controls number of retransmissions of a single CAN frame from a single TXT bu�er. Retransmitt

counter counts from zero, and it counts only when retransmitt limitation is enabled by user (SETTINGS[RTRLE] = '1').

When retransmitt limitation is disabled (SETTINGS[RTRLE] = '0') CAN frame transmission is attempted inde�nitely.

Retransmitt counter is incremented by 1 when arbitration is lost, or when error frame transmission is requested by Error

detector (re�er to 4.1.1).

When error frame and arbitration loss occur in the same frame, retransmitt counter is incremented only once (such a

situation is shown in Figure 4.7). When multiple error frames occur in the same frame (e.g. due to error during error

frame), retransmitt counter is also incremented only once.

When Retransmitt counter reaches retransmitt limit (SETTINGS[RTRTH]), it signals this to Protocol control FSM. In

case of next arbitration loss or error frame request, Protocol control FSM stops transmitting the actual frame and active

TXT bu�er moves to TX Failed state (see Figure 4.25). When unit is a receiver without attempt to transmitt a frame

(no frame was available during bus idle, intermission), retransmitt counter is not modi�ed during this frame. When

unit is error passive and transmission of a frame is not succesfull, unit becomes receiver of next frame (due to suspend

transmission �eld) without attempting to transmitt a frame. If error occurs during next frame, retransmitt counter is not

incremented. Possible con�gurations of retransmitt limit are shown in Table 4.3.

Retransmitt counter is cleared when TXT bu�er used for transmission changes between two consecutive transmissions

(another TXT bu�er with another TX Frame selected by TX Arbitrator), as is described in Table 4.44. Retransmitt

counter is cleared upon succesfull transmission (TXT bu�er goes to TX OK state) or when transmission fails (TXT

bu�er goes to TX Failed state). Retransmitt counter is also cleared when TXT bu�er which is currently used for

transmission goes to Aborted state.

Table 4.3: Retransmitt limit con�guration

SETTINGS[RTRTH] SETTINGS[RTRLE] Behaviour
- 0 Frame transmission is attempted without any limitation until unit

turns Bus-o�.
0 1 Frame transmission is attempted only once, there is no

retransmission attempt after �rst failed transmission (so called
one-shot mode).

1 - 15 1 Frame transmission is attempted SETTINGS[RTRTH] times.
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CAN Bus CAN frame Error frame CAN frame Error frame CAN frame Error frame

Retransmitt counter 0 1 2 0

Retransmitt limit 2

Transmission type Initial transmission First re-transmission Second re-transmission

Operational state Idle Transmitter Idle Transmitter Idle Transmitter Idle

TXT Buffer state Ready TX in Progress Ready TX in Progress Ready TX in Progress TX Error

Figure 4.6: Retransmitt counter operation

CAN Bus CAN frame Error frame CAN frame Error frame CAN frame Error frame

Retransmitt counter 0 1 2 0

Retransmitt limit 2

Arbitration lost

Transmission type Initial transmission First re-transmission Second re-transmission

Operational state Idle Transmitter Idle Transmitter Receiver Idle Transmitter Idle

TXT Buffer state Ready TX in Progress Ready TX in Progress Ready TX in Progress TX Error

Figure 4.7: Retransmitt counter - arbitration loss and error frame

CAN Bus CAN frame Error frame CAN frame Error frame CAN frame

Retransmitt counter 0 1 2 0

Retransmitt limit 2

Transmission type Initial transmission First re-transmission Second re-transmission

Operational state Idle Transmitter Idle Transmitter Idle Transmitter Idle

TXT Buffer state Ready TX in Progress Ready TX in Progress Ready TX in Progress TX OK

Figure 4.8: Retransmitt counter - second retransmission succesfull
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Reintegration counter

File: reintegration_counter.vhd

Reintegration counter counts 129 consecutive ocurrences of 11 consecutive recessive bits after CTU CAN FD turned

bus-o�. Reintegration counter counts only during reintegration, not during initial bus integration. Reintegration counter

counts from zero, and it is cleared when unit is bus-o� and it receives command to reset error counters (by writing logic

1 to COMMAND[ERCRST] register). Reintegration counter is incremented by 1 after each 11 consecutive recessive

bits are received. 11 consecutive recessive bits are measured by Control counter. If during reintegration dominant bit is

detected, Control counter is pre-loaded again to 10 (there was dominant bit before 11 consecutive recessive bits were

reached). When reintegration counter reaches 128 (0-128 = 129 times), it signals this to Protocol control FSM. Upon

such event Protocol control FSM becomes Idle, unit becomes error active again and operation control state is changed

to Idle. An example use case of reintegration counter operation is shown in Table 4.4.

Table 4.4: Reintegration counter - use case

Step Action
1 CTU CAN FD is enabled by writing SETTINGS[ENA] = '1'. After bus integration is over, unit becomes

error active.
2 CTU CAN FD takes part in bus communication. Due to error frames, it turns �rst error passive and then

bus-o�.
3 SW is noti�ed of such an event by FCS interrupt, then SW reads FAULT_STATE register and �nds out

that unit is bus-o�.
4 SW decides that it wants the unit to join the network again. SW writes logic 1 to COMMAND[ERCRST]

(so called �error counter reset� command or �reintegration request�)
5 Reintegration counter is cleared. Control counter is preloaded to 10.
6 Control counter is being decremented by 1 for each recessive bit received by Protocol Control FSM. If

dominant bit is detected, Control counter is preloaded to 10 again.
7 After 11 consecutive recessive bits are received, Control counter is 0, it signals this to Protocol control FSM.
8 Protocol control FSM increments Reintegration counter by 1.
9 After 129 repetitions of 11 consecutive recessive bits (note that there can be CAN frames between

consecutive sequences of 11 consecutive recessive bits, these frames are ignored by CTU CAN FD),
Reintegration counter is 128. Reintegration counter signals this to Protocol Control FSM.

10 Protocol control FSM becomes Idle, CTU CAN FD becomes error active and it is ready to receive/transmitt
frames again.
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TX shift register

File: tx_shift_reg.vhd

TX shift register is 32 bit shift register which transmitts a bit sequence to the output of Protocol control module. TX

shift register is preloaded by Protocol control FSM in Process pipeline stage when new data sequence is about to be

transmitted, thus output value is also valid after Process pipeline stage of the same bit. TX shift register is shifted by

one position in Stu� pipeline stage of each bit on CAN bus during multi-bit frame �elds. When stu� bit is inserted, TX

shift register is not shifted (Protocol control is halted for one bit).

TX shift register is preloaded according to Table 4.5. TX shift register is enabled only as long as unit is transmitter. TX

shift register is not shifting when unit is receiver, nor during CAN frame �elds which last only one bit (SOF, ACK, etc.),

nor during �elds which transmitt constant sequence (EOF, error �ag, etc.). In such case constant value is transmitted

on its output. TX shift register shifts from lowest bit index to highest bit index (shifting up). Transmission of single bits

(e.g. SOF, ACK) or constant sequences (e.g. active error �ag, EOF) is handled by separate logic inside TX shift register,

and has higher priority than transmission from TX shift register. Rules for handling of these situations are described in

Table 4.6. An example of TX shift register operation during CAN frame is shown in Table 4.7

Table 4.5: TX shift register preload rules

CAN frame �elds in which TX shift register is
preloaded

Preloaded bit sequence Where the bit sequence is preloaded
from

SOF, suspend transmission, intermission, idle Base identi�er Identi�er capture register in TX
Arbitrator.

IDE bit Identi�er extension Identi�er capture register in TX
Arbitrator.

r0 bit of CAN 2.0 frame with identi�er
extension, EDL/r0 bit. ESI bit

Data length code Metadata capture registers in TX
Arbitrator.

Last bit of data length code, in data �eld when
multiple of 32 bits of data �eld were
transmitted.

Data word (4 bytes) for
transmission.

TXT bu�er RAM data output on
Port B.

Last bit of data length code in ISO CAN FD
frames without data �eld, in last bit of data
�eld in ISO CAN FD frames.

Stu� count and stu�
parity.

Counter of stu�ed bits in Bit
Stu�ng module.

Last bit of stu� count, last bit of data �eld in
non-ISO CAN FD frames (no stu�-count), last
bit of data length code in non-ISO CAN frames
with no data �eld.

Calculated CRC. CRC calculation register in CAN
CRC module.

Table 4.6: TX Shift register - special cases

Bit value transmitted Special conditon
Dominant Error frame request - unit is error active
Recessive Error frame request - unit is error passive
Dominant Protocol control FSM requests transmission of

dominant bit
Recessive TX shift register is disabled and none of the above

conditions apply. This situation corresponds to
transmission of continuous stream of recessive bits.
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Table 4.7: TX shift register - example of operation

CAN Frame: Base identi�er: 0x123
DLC: 0x1
Data: 0xAB
Frame Type: CAN FD Frame
Identi�er Type: Base Identi�er

Bit on CAN bus TX Shift Register status,
left-most bit transmitted on output of Protocol Control,
transmitted sequence boldom

SOF 00000000 00000000 00000000 00000000
Base ID - Bit 1 00100100 01100000 00000000 00000000 (Base ID: 0x123: 00100100011)
Base ID - Bit 2 01001000 11000000 00000000 00000000
Base ID - Bit 3 10010001 10000000 00000000 00000000
Base ID - Bit 4 00100011 00000000 00000000 00000000
Base ID - Bit 5 01000110 00000000 00000000 00000000
Base ID - Bit 6 10001100 00000000 00000000 00000000
Base ID - Bit 7 00011000 00000000 00000000 00000000
Base ID - Bit 8 00110000 00000000 00000000 00000000
Base ID - Bit 9 01100000 00000000 00000000 00000000
Base ID - Bit 10 11000000 00000000 00000000 00000000
Base ID - Bit 11 10000000 00000000 00000000 00000000
RTR 00000000 00000000 00000000 00000000
IDE 00000000 00000000 00000000 00000000
r0 00000000 00000000 00000000 00000000
DLC - Bit 1 00010000 00000000 00000000 00000000 (DLC: 0x1 0001)
DLC - Bit 2 00100000 00000000 00000000 00000000
DLC - Bit 3 01000000 00000000 00000000 00000000
DLC - Bit 4 10000000 00000000 00000000 00000000
Data - Bit 1 10101011 00000000 00000000 00000000 (Data: 0xAB 10101011)
Data - Bit 2 01010110 00000000 00000000 00000000
Data - Bit 3 10101100 00000000 00000000 00000000
Data - Bit 4 01011000 00000000 00000000 00000000
Data - Bit 5 10110000 00000000 00000000 00000000
Data - Bit 6 01100000 00000000 00000000 00000000
Data - Bit 7 11000000 00000000 00000000 00000000
Data - Bit 8 10000000 00000000 00000000 00000000
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RX shift register

File: rx_shift_reg.vhd

RX shift register is 32 bit shift register which receives bit sequence and stores parts of this sequence to dedicated capture

registers. RX shift register operates in two basic modes as is described in Table 4.8. Mode of RX shift register determines

whether input of each byte in shift register is taken from output of previous byte, or directly from input of RX shift

register. Diagram of RX shift register is shown in Figure 4.9. Shifting of each byte of RX shift register is enabled

separately and it is controlled by Protocol control FSM. RX Shift register is shifting during multi-bit �elds on CAN bus

and it shifts by one position each bit in Process pipeline stage. This corresponds to reception of bit from CAN bus. RX

shift register shifts up. RX shift register stores part of its content to either a dedicated capture register, or RX bu�er

memory as described in Table 4.9. Received CRC sequence is not stored into any capture register and it is used for

CRC check directly from RX shift register (CRC frame �eld is the last �eld of CAN frame which is shifted into RX shift

register, therefore after CRC frame �eld, CRC remains in RX shift register).

RX shift register is not used till the end of frame and its content remains stable. Other one bit metadata information

are stored to dedicated capture registers directly from input of RX shift register in corresponding �elds of CAN frame as

described in Table 4.10. An example of RX shift register operation is shown in 4.11

Table 4.8: RX shift register modes

RX Shift
register
mode

Bit �elds on CAN bus
when mode is used.

Byte which is enabled. Description

Linear
mode

Base identi�er,
identi�er extension,
DLC, CRC sequence,
Stu� count

All bytes are enabled. Shift register forms single 32-bit shift register.
Inputs of each next byte are connected to
outputs of previous byte. All bits are shifted
simultaneously.

Byte mode Data �eld Only one byte is
enabled at any time.
Enabled byte is given
by index of actually
received data �eld
byte on CAN bus.

Shift register forms 4 separate 8-bit shift
registers. Inputs of each byte are connected to
input of RX shift register. Only 1 shift register
(one byte) is shifted at any time.

Table 4.9: RX shift register - stored sequences

Bit on CAN bus in which
RX shift register stores part of its
content.

Meaning of stored sequence Destination where value is stored.

Last bit of base identi�er Base identi�er Capture register.
Last bit of identi�er extension Extended identi�er Capture register.
Last bit of data length code Data length code Capture register.
Last bit of data �eld or last bit of
memory word within data �eld (after
each 32 bits).

4 bytes (single memory word) of
data �eld.

RX bu�er RAM memory.

Last bit of stu� count Grey coded stu� count + stu�
parity

Capture register.
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Table 4.10: RX shift register - stored single bits

Protocol control FSM
state

Meaning of stored bit Corresponding
metadata signal

Destination where value
is stored.

BRS Value of bit rate switch bit BRS Capture register
ESI Value of error state indicator bit ESI Capture register
IDE Value of identi�er extension bit ID_TYPE Capture register
RTR/SRR/R1,
RTR/R1

Value of remote transmission
request Bit

RTR Capture register

EDL/R0, EDL/R1 Value of extended data length /
�exbile data-rate format bit

FR_TYPE Capture register

D Q

CE

Input

8 Bit 
shift 

register

D Q

CE

8 Bit 
shift 

register

D Q

CE

8 Bit 
shift 

register

D Q

CE

8 Bit 
shift 

register

Clock
Enables

(separate
for each

byte)

Input
Selection
(Mode)

Status

Capture registers

Status Status Status

Capture
Control
Signals

RX ID

RX Metadata

RX Stuff Count

RX CRC,
RX Data word

rx_shift_reg

Figure 4.9: RX shift register - Block diagram
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Table 4.11: RX shift register operation

CAN Frame: Base ID: 0x123
DLC: 0x2
Data: 0xAB 0xCD
Frame Type: CAN FD Frame
Identi�er Type: Base Identi�er

Bit on CAN bus Mode RX shift Register status,
right most bit is received on input of Protocol control,
received sequence boldom

SOF - 00000000 00000000 00000000 00000000
Base ID - Bit 1 Linear 00000000 00000000 00000000 00000000
Base ID - Bit 2 Linear 00000000 00000000 00000000 00000000
Base ID - Bit 3 Linear 00000000 00000000 00000000 00000001
Base ID - Bit 4 Linear 00000000 00000000 00000000 00000010
Base ID - Bit 5 Linear 00000000 00000000 00000000 00000100
Base ID - Bit 6 Linear 00000000 00000000 00000000 00001001
Base ID - Bit 7 Linear 00000000 00000000 00000000 00010010
Base ID - Bit 8 Linear 00000000 00000000 00000000 00100100
Base ID - Bit 9 Linear 00000000 00000000 00000000 01001000
Base ID - Bit 10 Linear 00000000 00000000 00000000 10010001
Base ID - Bit 11 Linear 00000000 00000000 00000001 00100011 (Base ID: 0x123:

00100100011)
RTR - 00000000 00000000 00000001 00100011
IDE - 00000000 00000000 00000001 00100011
r0 - 00000000 00000000 00000001 00100011
DLC - Bit 1 Linear 00000000 00000000 00000010 01000110
DLC - Bit 2 Linear 00000000 00000000 00000100 10001100
DLC - Bit 3 Linear 00000000 00000000 00001001 00011001
DLC - Bit 4 Linear 00000000 00000000 00010010 00110010 (DLC: 0x2 0010)
Data Byte 0 - Bit 1 Byte 00000000 00000000 00010010 00110011
Data Byte 0 - Bit 2 Byte 00000000 00000000 00010010 00110010
Data Byte 0 - Bit 3 Byte 00000000 00000000 00010010 00110101
Data Byte 0 - Bit 4 Byte 00000000 00000000 00010010 00111010
Data Byte 0 - Bit 5 Byte 00000000 00000000 00010010 00110101
Data Byte 0 - Bit 6 Byte 00000000 00000000 00010010 00101010
Data Byte 0 - Bit 7 Byte 00000000 00000000 00010010 01010101
Data Byte 0 - Bit 8 Byte 00000000 00000000 00010010 10101011 (Data: 0xAB 10101011)
Data Byte 1- Bit 1 Byte 0000000 00000000 00010011 10101011
Data Byte 1- Bit 2 Byte 0000000 00000000 00010011 10101011
Data Byte 1- Bit 3 Byte 0000000 00000000 00010110 10101011
Data Byte 1- Bit 4 Byte 0000000 00000000 00011100 10101011
Data Byte 1- Bit 5 Byte 0000000 00000000 00011001 10101011
Data Byte 1- Bit 6 Byte 0000000 00000000 00110011 10101011
Data Byte 1- Bit 7 Byte 0000000 00000000 01100110 10101011
Data Byte 1- Bit 8 Byte 0000000 00000000 11001101 10101011 (Data: 0xCD 1100 1101)
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Error detector

File: err_detector.vhd

Error detector processes errors detected by other modules, decides whether these errors are valid, and generates error frame

request to Protocol control FSM. Errors are detected in Process pipeline stage, and error frame request is provided to

Protocol control FSM one clock cycle after Process pipeline stage. Error frame request is registered to avoid combinatorial

loops between Error detector and Protocol control FSM. Error types and modules of their origin are described in Table

4.12. Error detector containts Error code capture register which stores type and position of last error. Error code capture

register is loaded when Error detector creates error frame request to Protocol control FSM. Re�er to [2] for description

of Error code capture register. An example of error detection (form error) with details of actions in each pipeline stage

is shown in Figure 4.10.

Table 4.12: Error detection rules (part 1)

Error
type

CAN frame
�elds when
error is
detected

CAN Frame
Fields where
Error can't occur

Module
where
error is
detected

Description

Bit
er-
ror

SOF,
control,
data, stu�
count,
CRC, CRC
delimiter

Can occur
anywhere

Bit error
detector
in Bus
sampling
module

Bit error is detected when transmitted and received value
of bit on CAN bus di�ers. Re�er to 4.8 for details of bit
error detection by Bus sampling module. Bit error
detection by Bus sampling module is enabled always, it is
only ignored in bit �elds as described in 4.16.

Arbitration
�eld

Can occur
anywhere

Protocol
control
FSM

In arbitration �eld, bit error detected by Bus sampling is
ignored by Error detector. Instead bit error detected by
Protocol control FSM is considered. Protocol control
FSM detects bit error during arbitration �eld only when
transmitted bit was dominant and received bit is
recessive.

Stu�
error

Arbitration
�eld,
control,
data, stu�
count, CRC

Intermission, idle,
suspend, error
frame, overload
frame, end of
frame, CRC
delimiter, ACK,
ACK delimiter

Bit
destu�-
ing
module

Stu� error is detected by Bit destu�ng module as
described in 4.1.5. If �xed stu� bit does not have oposite
value as previous bit, this error is detected as stu� error
by Bit destu�ng module, but error is stored as form error
in Error code capture register.

Form
error

SOF,
control,
stu� count,
CRC, EOF

Arbitration, data
�eld, ACK,
intermission,
suspend
transmission

Protocol
control
FSM, Bit
destu�-
ing
module
for �xed
stu� bits.

Form error is detected by Protocol Control FSM by
checking received bit during �xed frame �elds as
described in 4.14. Protocol control signals form error to
Error detector and based on this, Error frame request is
signalled one clock cycle after Process pipeline stage.
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Table 4.13: Error detection rules (part 2)

Error
type

CAN frame
�elds when
error is
detected.

CAN frame �elds
where error can't
occur.

Module
where
error is
detected

Description

CRC
error

ACK
delimiter

SOF, Arbitration,
Control, Data,
Stu� Count,
CRC, CRC
Delimiter, ACK,
End of Frame,
Intermission, Bus
idle, Error frame,
Overload frame

Protocol
control
FSM

Comparison of RX CRC with calculated CRC is executed
in Error detector. After CRC �eld has passed, RX shift
register is not shifting, and CRC module is not
calculating CRC anymore, therefore comparison shows
valid result from CRC delimiter further. Based on result
of comparison �CRC match� is signalled to Protocol
control FSM. If unit is receiver and �CRC match� is not
signalled to Protocol control FSM in ACK delimiter,
Protocol control FSM detects CRC error (in Process
pipeline stage of ACK delimiter) and propagates it back
to Error detector. Error detector generates Error frame
request for Protocol control FSM. An example of CRC
check mechanism and detection of CRC error is shown in
Figure 4.11.

ACK
error

ACK SOF, Arbitration,
Control, Data,
Stu� Count,
CRC, CRC
Delimiter, ACK
Delimiter, End of
Frame,
Intermission, Bus
idle, Error frame,
Overload frame

Protocol
control
FSM

ACK error is detected by Protocol control FSM when unit
is transmitter, recessive bit is received, and unit is not in
Self test mode (frame valid also without ACK dominant).

Table 4.14: Form error detection

CAN frame �eld Condition
SOF If recessive bit is received, form error is detected.
r0 bit after EDL/r1 bit in frame
with extended identi�er or r0 bit in
CAN FD frames

If recessive bit is received, form error is detected when SETTINGS[PEX] =
'0'. Recessive bit would mean extending beyond CAN FD standard. When
SETTINGS[PEX] = '1', form error is not detected and CTU CAN FD
enters integration.

CRC delimiter, ACK delimiter If dominant bit is received, form error is detected.
EOF If dominant bit is detected at all but last bit of EOF, form Error is

detected. At last bit dominant bit means Error frame only for transmitter.
For receiver, it means Overload condition.

All but last bit of error delimiter and
overload delimiter

If dominant bit is received, form error is detected.
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Table 4.16: Bit error by Bus sampling module exceptions

Frame Field/
Protocol control
FSM state

Description

SOF Dominant bit is transmitted. Bit error would be detected when recessive value was received.
Such a situation is treated as form error, and bit error is ignored.

bus integration,
reintegration

Recessive value is transmitted, receiving dominant is not detected as bit error since these
might represent a frame between other units while CTU CAN FD is integrating.

arbitration �eld Bit error is detected by Protocol control FSM, thus bit error detected by Bus sampling
module is ignored.

Control, data,
stu� count, CRC

Bit error detected by Bus sampling module is ignored if unit is receiver. Receiver in these
�elds transmitts only recessive bits and reception of dominant bit is not treated as bit error
since unit is receiving data from other transmitter.

CRC delimiter Receiving dominant bit during is interpreted as form error, due to this reason bit error
detected by Bus sampling module is ignored.

ACK Bit error is ignored, as is de�ned in [1].
ACK delimiter During ACK delimiter, recessive value is transmitted and reception of dominant value is

considered as form error. Due to this reason bit error is ignored.
EOF Reception of dominant bit during EOF is treated as form error due to this bit error is ignored.
Intermission Recessive value is sent to the bus. Receiving dominant bit during �rst or second bit of

intermission is interpreted as overload frame. Receiving dominant bit during third bit of
intermission is interpreted as SOF of next frame. Due to these reasons, bit error during
intermission is ignored.

Suspend
transmission, idle

Recessive value is sent to the bus. Receiving dominant bit is interpreted as SOF of next
frame. Due to this reason bit error during suspend transmission and idle is ignored.

Reintegration
wait

When unit turned bus-o�, it is de-facto o� the bus, It shall not transmitt anything unless it
re-intagrates. Due to this reason bit error is ignored.

Passive error �ag Detecting dominant bit during passive error �ag is not interpreted as bit error since it is
de�ned like so in [1].

Error delimiter,
Overload
delimiter

Recessive bit is sent to the bus. Receiving dominant bit is interpreted as form error. Due to
this bit error is ignored.

Sample point                                                                             Start of next bit                           

System clock

CAN Bus field End of frame                                                  Active Error Flag

Pipeline stage Destuff Process Process + 1 Stuff

Form Error

Error frame request

Protocol control FSM End of Frame Active Error Flag

RX Data

TX Data

a

|

c

b d

Figure 4.10: Error detection example (form error)
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Error Detector
Protocol Control
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between received CRC and

calculated CRC or received Stuff Count
and calculated stuff count

Frame
Progress

CRC Delimiter
CRC Match 
calculation

ACK Slot
Protocol control FSM 
commands TX Shift 
register to transmitt 

recessive ACK

ACK Delimiter
Protocol control signals CRC Error
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Error Detector signals Error Frame request

First bit of Error Flag

Protocol control FSM
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Error Code Capture 
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Transmitts Dominant 

or Recessive based 
on type of Error Flag

Figure 4.11: CRC check and CRC error signalling

4.1.2 Operation control

File: operation_control.vhd

Operation control implements Operational state of CTU CAN FD node (transmitter, receiver, idle). Operation control

contains an FSM whose state transition diagram is shown in Figure 4.12. It is controlled by Protocol control FSM and

Fault con�nement FSM. Rules for control of Operation control FSM are described in Table 4.17.

Off Idle

Transmitter

Receiver

Set Idle

Set
Receiver

Set
Transmitter

Arbitration Lost,
Set Receiver

Set Idle

Set Idle

Frame in 
Progress

No Frame 
in Progress

Legend:

Set
Transmitter

SETTINGS[ENA] =’0'
or unit is Bus-off

Figure 4.12: Operation control FSM
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Table 4.17: Operation control FSM - state transitions

Actual state
Next state Description

O� Idle When unit is turned on (SETTINGS[ENA]='1'), unit integrates to the bus
communication. After integration is �nished (11 consecutive recessive bits received),
Protocol control signals set_idle. Unit becomes idle.

Idle Transmitter Unit is idle and in sample point TX arbitrator signals available frame for
transmission, Protocol control FSM locks Validated TXT bu�er (re�er to 4.39),
Protocol control signals set_transmitter and unit becomes transmitter of frame
from Validated TXT bu�er.

Idle Receiver Unit is idle, there is no available frame for transmission signalled by TX arbitrator.
Dominant bit is sampled, Protocol control FSM signals set_receiver and unit
becomes receiver of next frame.

Transmitter
Receiver
due
to
set_receiver

Unit transmitts frame. In last bit of intermission �eld, unit is still transmitter, unit
detects dominant bit and considers this bit as SOF (re�er to [1]). If there is no
available frame for transmission signalled by TX arbitrator, Protocol control FSM
signals set_receiver and unit becomes receiver of following frame.
Unit is error passive and it transmitts a frame. It enters suspend transmission. If
during suspend transmission, dominant bit is detected, Protocol control FSM issues
set_receiver and unit becomes receiver of next frame.

Transmitter Receiver
due to
arbitra-
tion_lost

If during arbitration �eld recessive bit is sent on the bus, but dominant bit is
monitored by Protocol control FSM, arbitration_lost is signalled and unit becomes
receiver.

Transmitter Idle Unit transmitts a frame. In last bit of intermission, recessive bit is detected (no other
unit is attempting to transmitt frame) and there is no available frame for
transmission signalled by TX arbitrator. Protocol control FSM issues set_idle
command and unit becomes idle.

Receiver Transmitter Unit receives a frame. In last bit of intermission, available frame for transmission is
signalled by TX arbitrator. Protocol control FSM signals set_transmitter and unit
becomes transmitter of frame from Validated TXT bu�er.

Receiver Idle Unit receives a frame. In last bit of intermission, there is no available frame for
transmission signalled by TX arbitrator, recessive bit is monitored (no other unit is
attempting to transmitt frame), then Protocol control FSM issues set_idle
command and unit becomes idle.

Idle, Trans-
mitter,
Receiver

O� Fault con�nement FSM signals that unit is bus-o� or unit is disabled
(SETTINGS[ENA] = '0'). In next sample point, unit becomes �O��.
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4.1.3 Fault con�nement

File: fault_con�nement.vhd

Fault con�nement module implements following functionality:

� Transmitt error counter (TEC)/ receive error counters (REC) according to [1].

� Rules for manipulation of TEC and REC.

� Fault con�nement state of node (error active, error passive, bus-o�).

� Set of special error counters to distuinguish between errors in nominal bit rate and data bit rate.

Fault con�nement block diagram is shown in Figure 4.13.

fault_confinement

fault_confinement_fsm

fault_confinement_rules

err_counters

Is Error Active

Is Error Passive

Is Bus-off

Fault conf.
State changed

Error Warning
Limit Reached

Fault
Confinement

Interface

Increment by 1

Increment by 8

Decrement by 1

Reset counters

EWL
ERP

REC

TEC

Nominal
Error counter

Data
Error counter

Test access

Figure 4.13: Fault con�nement block diagram

TEC and REC counters are controlled by Protocol control FSM via as described in 12.1.3.3 of [1]. Detection of special

conditions stated in 12.1.4.2 of [1] is implemented in Fault con�nement rules module. Error counters module implements

counters as described in Table 4.18. Each counter can be modi�ed from Memory registers via CTR_PRES register

when CTU CAN FD is in Test mode (MODE[TSTM] = '1'). Fault con�nement state as de�ned in 12.1.4.1 of [1] is

implemented by Fault con�nement FSM. State transition diagram of Fault con�nement FSM is shown in Figure 4.14.

Threshold for Error warning limit detection (EWL) and transition to error passive (ERP) can be con�gured from Memory

registers when device is in Test mode (MODE[TSTM] = '1'). Transition from bus-o� to error active is performed after
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reintegration (set_err_active is signalled by Protocol control FSM). Re�er to 4.1.1 for description of Reintegration

counter operation.

Error Active

TEC >= ERP
or

REC >= ERP

Error 
Passive

Bus-off

TEC < ERP
and

REC < ERP

TEC > 255

Set Error
Active

Figure 4.14: Fault con�nement FSM

Table 4.18: Error counters

Counter
Name CAN FD

standard
name

Description

Receive
error
counter

REC Incremented, decremented as described in 12.1.4.2 of [1].

Transmitt
error
counter

TEC Incremented, decremented as described in 12.1.4.2 of [1].

Nominal
error
counter

- Incremented by 1 for each error detected during nominal bit rate. No in�uence on
fault con�nement state of CTU CAN FD.

Data error
counter

- Incremented by 1 for each error detected during data bit rate. No in�uence on fault
con�nement state of CTU CAN FD.

4.1.4 Bit stu�ng

File: bit_stu�ng.vhd

Bit stu�ng module implements following functionality:

� Inserts stu� bits to data transmitted by Protocol control (regular and �xed stu� bits).

� Halts CAN core for one bit time when stu� bit is inserted.

� Counts number of stu� bits modulo 8 for transmission of stu� count �eld.

� Inserts stu� bit in the beginning of stu� count �eld or CRC �eld of CAN FD Frame.
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Bit stu�ng module processes data transmitted by Protocol control in Stu� pipeline stage. Bit stu�ng module operates

in two modes as described in 4.19. When Bit stu�ng is enabled, it inserts bit of opposite polarity to transmitted bit

stream based on Bit stu�ng mode. Data are processed by Bit stu�ng module with one clock cycle delay (output is

registered). When Bit stu�ng module is disabled, it propagates data from input to output without inserting stu� bits ,

but still with one clock cycle delay. Input data are processed in Stu� pipeline stage regardless of the fact if Bit stu�ng

module is enabled or disabled (Input is not combinatorially bypassed when Bit stu�ng module is disabled). Bit stu�ng

module is enabled only when unit is transmitter of CAN Frame. When unit is receiver, Bit stu�ng module is disabled

and only propagates recessive bit values from input to output. Bit stu�ng module counts number of inserted stu� bits in

Regular Bit stu�ng mode in counter of stu� bits (this counter is then used in stu� count frame �eld). A basic sequence

of Bit stu�ng module operation is described in Table 4.20.

When bus is idle and transmission of frame starts, SOF bit is the �rst bit which is processed by Bit stu�ng module. If

unit samples dominant bit during third bit of intermission, bus idle or suspend transmission, this bit is considered as SOF

bit (see 10.4.2.2 of [1]). Such bit is counted as �rst dominant bit by Bit stu�ng module. Bit stu�ng module is disabled

when unit reaches CRC delimiter frame �eld. Bit stu�ng module is not disabled in last bit of CRC sequence so that

stu� bit can be inserted behind the last bit of CRC sequence. When CTU CAN FD loses arbitration (turns receiver), Bit

stu�ng module is disabled. An example of Bit stu�ng module operation during whole frame is shown in Figure 4.15. If

an error is detected (error frame is requested by Error detector), Bit stu�ng module is disabled. Bit stu�ng module is

enabled only during �elds which shall be coded by bit stu�ng as described in [1].

Table 4.19: Bit stu�ng modes

Bit stu�ng
mode

Stu� rule
length Description

Regular 5 When 5 consecutive bits of equal value are processed, bit of opposite value is
inserted. Inserted stu� bit counts as �rst bit of next sequence of 5 equal consecutive
bits (bit stu�ng is recursive).

Fixed 4 When 4 bits are processed (regardless of their value), a bit of opposite value than
last bit of these 4 bits is inserted on output of Bit stu�ng module.
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Table 4.20: Bit stu�ng module operation

Step Action
1 Bit stu�ng module is disabled, there is no transmission / reception in progress by CTU CAN FD. Counter

of equal consecutive bits is 1. Bit stu�ng module only propagates recessive value to output in Stu�
pipeline stage.

2 Transmission starts (unit becomes transmitter), Bit stu�ng module is enabled. Length of Stu� rule is
con�gured to 5 by Protocol control FSM.

3 Bit stu�ng module processes bits from Protocol control in Stu� pipeline stage. Counter of equal
consecutive bits is incremented by 1 for each processed bit of equal polarity (with respect to previous bit).
When bit of opposite polarity is processed, counter of equal consecutive bits is set to 1.

4 Counter of equal consecutive bits reaches length of Stu� rule. Instead of propagating processed bit to
output, Bit stu�ng inserts bit of opposite polarity on output. Bit stu�ng module halts to Protocol
control. Protocol control remains halted for one bit. Counter of stu� bits is incremented by 1.

5 After one bit time for which Protocol control was halted, it continues in transmission. Bit stu�ng module
continues in processing data transmitted by Protocol control. Counter of equal consecutive bits is
incremented after insertion of stu� bit to account for recursive behaviour of bit stu�ng.

Applies only for CAN FD frames

6 CAN FD Frame advances to last bit of frame �eld preceding stu� count frame �eld. Bit stu�ng mode is
changed to Fixed. Length of Bit stu�ng rule is con�gured to 4.

7 Stu� bit is inserted by Bit stu�ng module in the �rst bit which is processed in Fixed Bit stu�ng mode
(First bit of stu� count frame �eld).

8 Counter of equal consecutive bits is incremented with each processed bit regardless of previous processed
bit value. Stu� bit is inserted after each 4 processed bits.

Protocol Control
FSM

Bit Stuffing

TX Frame is signalled by TX Arbitrator,
Protocol control FSM enables Bit Stuffing

Frame
Progress

Bus Idle

SOF

Bit Stuffing is enabled

First bit processed by Bit Stuffing

Next bits during CAN frame
Bits processed by Bit Stuffing.

Counter of equal consecutive bits 
reaches 5, Stuff Bit is inserted,
Stuff Counter is incremented

“Data Halt” is signalled to Protocol controlProtocol Control remains 
halted for one Bit time. TX 
Shift register is not shifted.

Protocol control continues transmitting 
after one bit time

Bit Stuffing processes next bits

Repeated for each
sequence of 5

consecutive bits of
equal polarity

End of Frame field
before Stuff Count

Protocol control FSM changes
Bit Stuffing mode to Fixed Stuffing Bit Stuffing mode is Fixed Stuffing

“Data Halt” is signalled to Protocol control due
to first processed bit by Fixed StuffingFirst bit of Stuff Count

Protocol control continues transmitting 
after one bit time

Stuff bit is inserted after each 4 bits
“Data Halt” is signalled to Protocol control

CRC Delimiter Protocol control disables Bit Stuffing Bit Stuffing is disabled, rest of the frame is 
transmitted without insertion of Stuff Bits

Figure 4.15: Bit stu�ng detailed operation
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4.1.5 Bit destu�ng

File: bit_destu�ng.vhd

Bit destu�ng module implements following functionality:

� Discards stu� bits from received data on CAN bus (regular and �xed stu� bits).

� Halts CAN core for one bit time when stu� bit is discarded.

� Counts number of de-stu�ed bits modulo 8 for comparison with received stu� count frame �eld.

� Discards �rst �xed stu� bit of CAN FD Frame.

� Detects stu� error.

Bit destu�ng module processes received data on CAN bus as provided by multiplexor in Figure 4.1 in Destu� pipeline

stage. Bit destu�ng module operates in two modes as described in Table 4.21. Bit destu�ng module discards stu� bits

according to current Bit destu�ng mode. Discarded stu� bit is signalled to Protocol control and it is ignored by Protocol

control (not shifted to RX shift register, does not a�ect Protocol control FSM). Input data are processed with one clock

cycle delay (output is registered). When Bit destu�ng module is disabled, it only propagates input data to output in

Destu� pipeline stage without discarding any bit or detecting stu� error. Bit destu�ng module is enabled when unit is

transmitter or receiver since transmitter also receives bits transmitted by itself. Bit destu�ng module contains counter

of discarded stu� bits in Regular mode. This counter is compared with received stu� count �eld as part of CRC check

in CAN FD frames. A basic sequence of operation is shown in Figure 4.22.

When bus is idle, unit is in suspend transmission or third bit of intermission, Bit destu�ng module processes dominant

bit (which is subsequently evaluated as SOF by Protocol control FSM), then Bit destu�ng module considers this bit as

�rst bit in sequence of equal consecutive bits. Bit destu�ng module is disabled when unit reaches CRC delimiter frame

�eld. Bit destu�ng module is not disabled in last bit of CRC sequence so that stu� bit can be discarded behind the last

bit of CRC sequence. When transmission of error frame is requested, Bit destu�ng module is disabled. Bit destu�ng

module is enabled only during �elds which shall be coded by bit stu�ng as described in [1].

Table 4.21: Bit destu�ng modes

Bit
destu�ng
Mode

Destu� rule
length Description

Regular 5 When 5 consecutive bits of equal polarity are processed, next bit is discarded. If
value of discarded bit is equal to previous bit, stu� error is detected.

Fixed 4 When 4 bits are processed next bit is discarded, next bit is discarded regardless of
values of previous processed bits. If value of discarded bit is equal to previous bit,
stu� error is detected.
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Table 4.22: Bit destu�ng module operation

Step Action
1 Bit destu�ng module is disabled, there is no transmission / reception in progress by CTU CAN FD.

Counter of equal consecutive bits is 1. Bit destu�ng module only propagates recessive value to output in
Destu� pipeline stage.

2 Transmission or reception of frame starts (unit becomes receiver), Bit destu�ng module is enabled.
Destu� rule length is con�gured to 5 by Protocol control FSM.

3 Bit destu�ng module processes bits in Destu� pipeline stage. Counter of equal consecutive bits is
incremented by 1 for each processed bit of equal polarity (with respect to previous bit). When bit of
opposite polarity is processed, Counter of equal consecutive bits is set to 1.

4 Counter of equal consecutive bits reaches length of Stu� rule. Following bit is discarded (not processed)
and signalled to Protocol control FSM as �Destu�ed�. Protocol control ignores such a bit and its
processing of received data remains halted for one bit time. Number of discarded stu� bits (counter of
discarded stu� bits) is incremented by 1.

5 After one bit time for which Protocol control was halted, Bit stu�ng module processes next bit. This bit
is also processed by Protocol control. Counter of equal consecutive bits is incremented after discarding
stu� bit to account for �recursive� behaviour of bit destu�ng.

Applies only for CAN FD frames

8 CAN FD Frame advances to the end of frame �eld preceding stu� count frame �eld. Bit destu�ng mode
is changed to Fixed. Destu� rule length is con�gured to 4.

9 Stu� bit is discarded by Bit destu�ng module in the �rst bit which is processed in Fixed Bit Stu�ng
mode (�rst bit of stu� count frame �eld).

10 Counter of equal consecutive bits is incremented with each processed bit regardless of previous processed
bit value. Stu� bit is discarded after each 4 processed bits.

4.1.6 CAN CRC

File: can_crc.vhd

CAN CRC implements following functionality:

� Calculates CRC sequences according to [1] (for ISO CAN FD) and according to [6] (for non-ISO CAN FD).

� Chooses appropriate input and trigger for calculation of CRC sequence.

Block diagram of CAN CRC is shown in Figure 4.16.
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can_crc

crc_calc (CRC 15)

crc_calc (CRC 17)

crc_calc (CRC 21)

RX Data
(No Bit Stuffing)

TX Trigger
(No Bit Stuffing)

RX Trigger
(No Bit Stuffing)

TX Data
(With Bit Stuffing)

RX Data
(With Bit Stuffing)

TX Trigger
(With Bit Stuffing)

RX Trigger
(With Bit Stuffing)

Is transmitter
TX Data

(No Bit Stuffing)
Data input

Trigger

Data input

Trigger

CRC 15

CRC 17

CRC 21

CRC Enable

CRC Speculative
Enable

Figure 4.16: CAN CRC block diagram

CAN CRC contains 3 CRC calculation modules (CRC_15, CRC_17, CRC_21). CRC_15 is calculated from data

without stu� bits. CRC_17 and CRC_21 are calculated from data with stu� bits inserted. CRC register is preloaded to

CRC_INIT_VECTOR upon enabling of CRC calculation (before �rst bit is processed). When a CRC calculation module

is enabled, next step of CRC calculation is executed every bit of CAN frame. A pseudo-code for CRC calculation is shown

in [1].

Data input to CRC calculation is di�erent based on part of the CAN frame where CRC calculation is executed and oper-

ational state of CTU CAN FD. During arbitration �eld, or when speculative enable is used (during bus idle, intermission

or suspend transmission), CRC is calculated from received data as there can be multiple units transmitting on the bus

at once, and correct value (when bus has settled in sample point) must be used for calculation. After arbitration �eld

, transmitter calculates CRC from transmitted data, and receivers calculate CRC from received data. Calculation step

from transmitted data is shown in Figure 4.17 and from received data is shown in 4.18.

After arbitration �eld, source of data for CRC calculation changes from transmitted to received data. Pipeline stage

when next step of CRC calculation is executed di�ers based on source of input data (if received data are used, input

data are not valid before sample point) as described in Table 4.23. When CRC_17/CRC_21 execute CRC calculation

step from stu�ed/destu�ed bit, CRC_15 remains unchagned (according trigger signal is gated). CRC calculation step

can be enabled by means of two enable signals: Regular enable and Speculative enable. Meaning of these two signals is

explained in Table 4.24.
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Start of bit N + 1                                                 Start of bit N + 2 (Stuff bit)  

System clock

CAN Bus bit Bit N    Bit N + 1                         Bit N + 1 Bit N + 2

Pipeline stage Stuff Stuff + 1 Stuff Stuff + 1

Data Halt

CRC15 Bit N Bit N + 1

CRC15 trigger

CRC17 / CRC21 Bit N Bit N + 1 Bit N +2

CRC17 / CRC21 trigger

a

|

c

b d

Figure 4.17: CRC calculation - TX Data stream

Sample point of Bit N                                                 Sample point of Bit N + 1 (Stuff Bit)  

System clock

CAN Bus bit Bit N Bit N + 1

Pipeline stage Destuff Process Destuff Process

Destuffed bit

CRC15 Bit N - 1 Bit N

CRC15 trigger

CRC17 / CRC21 Bit N - 1 Bit N Bit N + 1

CRC17 / CRC21 trigger

a

|

c

b d

Figure 4.18: CRC calculation - RX Data stream

Table 4.23: CAN CRC calculation

CRC
module

Data
stream

Data input for CRC calculation Pipeline stage when calculation
step is executed

CRC_15
TX Transmitted data on output of Protocol control. Stu�
RX Received data on input of Protocol control. Process

CRC_17
TX Transmitted data on output of Bit stu�ng

module.
Stu� + 1 clock cycle

RX Received data on input of Bit destu�ng module. Process

CRC_21
TX Transmitted data on output of Bit stu�ng

module.
Stu� + 1 clock cycle

RX Received data on input of Bit destu�ng module. Process
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Table 4.24: CAN CRC enable signals

CAN CRC Enable
signal

Description

Regular enable When CRC module is enabled by regular enable signal, it executes next step of calculation in
according pipeline stage regardless of input data value to be processed. This enable signal is
used during CAN frame �elds from SOF until end of data �eld.

Speculative
enable

When CRC module is enabled by speculative enable signal, it executes next step of calculation
in according pipeline stage only when input data value to be processed is dominant (logic 0)
and recessive value is ignored. Speculative enable is used in suspend transmission, last bit of
intermission and bus idle when dominant value is sampled and this value is interpreted as SOF
by Protocol control (as this bit needs to be already taken into account for CRC calculation).

4.1.7 Trigger multiplexor

File: trigger_mux.vhd

Trigger multiplexor creates trigger signals for other blocks within CAN core from trigger signals generated by Prescaler

as described in Table 4.25. See 4.7.7 on how are trigger signals generated by Prescaler.

Table 4.25: Trigger signals

Trigger
Name

Pipeline
stage Description

Protocol
control TX
Trigger

Stu� Used to shift TX shift register in Protocol control. Gated when there is stu� bit
inserted, this corresponds to halting Protocol control for 1 bit time as described in
Table 4.20

Protocol
control RX
Trigger

Process Used to shift RX shift register in Protocol control, update of Protocol control FSM
state, manipulation of Control counter and Retransmitt Counter. Gated when stu�
bit is discarded, this corresponds to halting Protocol control for 1 bit time as
described in Table 4.22.

Bit Stu�ng
Trigger

Stu� Used to process transmitted data by Bit stu�ng module.

Bit
Destu�ng
Trigger

Destu� Used to process received data by Bit destu�ng module.

CRC TX
WBS
Trigger

Stu� + 1
clock cycle

Used to enable CRC calculation step for CRC_17 / CRC_21 when CRC calculation
step is executed from transmitted data.

CRC TX
NBS
Trigger

Stu� Used to enable CRC calculation step for CRC_15 when CRC calculation step is
executed from transmitted data.

CRC RX
WBS
Trigger

Process Used to enable CRC calculation step for CRC_17 / CRC_21 when CRC calculation
step is executed from received data.

CRC RX
NBS
Trigger

Process Used to enable CRC calculation step for CRC_15 when CRC calculation step is
executed from received data.
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4.1.8 Bus tra�c counters

File: bus_tra�c_counters.vhd

Bus tra�c counters contains two 32-bit counters (TX frame counter and RX frame counter). TX frame counter counts

succesfully transmitted frames (without error frame or arbitration lost) and is incremented by 1 for each such transmitted

frame. RX frame counter counts succesfully received frames (without error frame) and is incremented by 1 for each

such a frame. If unit is transmitter in Loopback mode (it also receives frame transmitted by itself), both counters are

incremented upon succesfull transmission/reception. In such case, TX frame counter is incremented when transmitted

frame is considered valid and RX frame counter is incremented when received is considered valid as de�ned in 10.7 of

[1]).

Both counters can be erased by SW via COMMAND[TXFRCRST] and COMMAND[RXFRCRST] register. Value of

tra�c counters can be read out from TX_FR_CTR and RX_FR_CTR registers. Bus tra�c counters are instantiated

only when sup_tra�c_counters=true. When Bus tra�c counters are not instantiated, access to TX_COUNTER and

RX_COUNTER registers are reserved and writes to COMMAND[TXFRCRST] and COMMAND[RXFRCRST] have no

e�ect.

4.2 RX bu�er

File: rx_bu�er.vhd

RX bu�er implements following functionality:

� Stores CAN frames and Errorframes to FIFO memory as CAN frame progresses.

� Counts number of stored frames in FIFO.

� Provides read interface for Memory registers.

� Aborts storing of CAN frame in case of an error frame request or overrun.

Block diagram of RX bu�er is shown in Figure 4.19.
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Figure 4.19: RX bu�er block diagram

RX bu�er contains FIFO memory (details of actual RAM memory are described in 3.7). The FIFO memory stores received

CAN FD frames, or Error frames (if CTU CAN FD is con�gured to do so). Size of RX bu�er memory is con�gurable by

rx_bu�er_size. Lower limit on size of RX bu�er RAM is set to be able to store at least 1 CAN FD frame with 64 byte

data payload. Format of CAN FD frame within the memory is described in 3.10 and visualized in Figure 4.20. Size of

CAN frame within RX bu�er memory spans from 4 to 20 32-bit memory words. Remote frames, frames with no data �eld

and Error frames span 4 memory words (Metadata, Identi�er, Timestamp upper and Timestamp lower). Each 4 bytes

of data �eld span one memory word. Longest frame with 64 data bytes spans 20 memory words (Metadata, Identi�er,

Timestamp upper, Timestamp lower and 16 data words).

RX frame is stored to FIFO by Storing protocol described in 4.2.1. RX Frame is read from FIFO by Reading protocol

described in 4.2.5. RX bu�er contains pointers to FIFO which are described in detail in Table 4.26. RX bu�er can by

�ushed by issuing Release receive bu�er command (writing logic 1 to COMMAND[RRB]). In such case, all pointers are

reset to zero as well as counter of stored frames (see 4.2.5). If Release receive bu�er command is issued by SW during

storing of CAN frame, overrun �ag is set, and upon the end of actual frame this frame is discarded, and Raw write pointer

is reset to value of previous Comited write pointer.
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Table 4.26: RX bu�er pointers

Pointer Incremented by 1 Pre-loaded Pre-load value
Raw write
pointer

When a word is written to RX
bu�er RAM (Metadata, Identi�er,
Timestamp or Data word)

When Reception abort command is
issued or, Reception valid command is
issued and Over�ow occured before in
the frame.

Commited write
pointer

Commited
write
pointer

- When frame is commited. Raw write pointer

Timestamp
write
pointer

During storing of Timestamp lower
word.

When Raw write pointer points to
Lower timestamp word of frame which
is actually being stored.

Raw write pointer

Read
pointer

When a word is read from RX
bu�er.

- -

FRAME_FORMAT_W

IDENTIFIER_W

TIMESTAMP_L_W

TIMESTAMP_U_W

DATA _1_4_W

DATA_5_8_W

FRAME_FORMAT_W

TIMESTAMP_L_W

TIMESTAMP_U_W

IDENTIFIER_W

FRAME_FORMAT_W

TIMETAMP_L_W

TIMESTAMP_U_W

IDENTIFIER_W

DATA _1_4_W

...

DATA_61_64_W

... Write pointer

Read pointer

CAN FD Frame 
(64 data bytes)

RTR frame

CAN 2.0 / FD frame
(8 data bytes)

Address 0

Address rx_buff_size - 1

...

Figure 4.20: RX bu�er memory format

4.2.1 Storing protocol

Protocol control FSM forms �Master� side of Storing protocol, and issues commands as described in Table 4.27. Com-

mands from Protocol control FSM are �ltered by Frame �lters before being connected to RX bu�er. Commands pass

CAN fame �lters when RX frame matches CAN frame �lters as described in 4.3. If received frame does not match

CAN frame �lters, commands are gated, and does not reach RX bu�er within current CAN frame. RX bu�er FSM

forms �Slave� side of this protocol, it receives commands and reacts upon them. State transition diagram of RX bu�er

FSM is shown in Figure 4.23. Commands are issued by Protocol control FSM continously as reception of CAN frame

progresses. Commands are issued by Protocol control FSM only when unit is receiver of a frame, or when Loopback

mode (SETTINGS[ILBP] = '1') is enabled. An example of Storing protocol is shown in Figures 4.2.1 and Figure 4.22.

Storing protocol is described in Table 4.28. If CTU CAN FD is con�gured to log Error frames to RX bu�er, then upon

Error Frame (Receive Abort Command), RX bu�er stores 4 words that represents the Error frame.

53



CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

As CAN frame is being stored, the frame can't be read out by SW via Memory registers. Only after the frame is succesfully

received without error frame or overrun (last bit of EOF �eld), it becomes available for readout by SW (the frame is so

called �commited�).

                                                                                      Metadata + Identifier stored                             Yellow Data word stored    Oragne Data word stored                           Timestamp stored

CAN frame part Idle SOF Arbitration Control Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 CRC End of frame

Store metadata

Store data

Reception valid

a c e g

b d f h

Figure 4.21: RX bu�er storing protocol - succesfull reception

                                                                         Metadata + Identifier stored                             Yellow Data word stored     Oragne Data word stored     Raw Write Pointer reverted

CAN frame part Idle SOF Arbitration Control Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 CRC Error frame

Store metadata

Store data

Reception abort

a c e g

b d f h

Figure 4.22: RX bu�er storing protocol - Error frame
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Figure 4.23: RX bu�er FSM
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Table 4.27: RX bu�er commands

Command Issued in CAN frame part Action performed Source of stored information to
RX bu�er RAM

Store
metadata

At the end of data length
code �eld.

Store Metadata word,
Identi�er word and zeroes to
Timestamp words.

Frame metadata and identi�er
from capture registers in RX shift
register in Protocol control.

Store data After multiple of 4 bytes of
data �eld elapsed and at the
end of data �eld.

Store Data word (4 bytes). RX shift register in Protocol
control.

Reception
valid

In sample point of last bit of
EOF �eld.

Timestamp is stored and
afterwards CAN Frame is
commited to memory.

Timestamp capture register.

Reception
abort

When error frame is
transmitted.

Frame storing is aborted, Raw
write pointer is reverted to
last Commited write pointer.

-

Table 4.28: RX bu�er storing protocol - detailed description

Step Action
1 Reception of CAN frame starts. If received frame timestamp is con�gured to be captured at SOF

(RX_SETTINGS[RTSOPT]), the timestamp is stored to a Timestamp capture register.
2 Identi�er is received to RX shift register in Protocol control, and stored to a dedicated capture register.

Metadata are stored to dedicated capture registers in Protocol control. See 4.1.1.
3 At the end of control �eld, it is already clear whether unit is transmitter or receiver. It can no longer

happend that a word will be stored to RX bu�er and unit will turn receiver due to losing arbitration. if
CTU CAN FD is receiver or in Looback mode, Protocol control FSM issues Store metadata command.

4 RX bu�er FSM stores Frame format word, received CAN identi�er to Identi�er word and zeroes to
Timestamp words. This happends during 4 consecutive clock cycles after �Store Metadata� command.
Raw write pointer is incremented by 1 during each of these cycles. When Raw write pointer points to
Lower Timestamp word, its value is captured to Timestamp write pointer. After this step Raw write
pointer points to �rst Data word.

5 Data �eld of CAN frame starts. After each 4 bytes are received on the CAN bus, Protocol control FSM
issues Store data command. The 4 bytes are stored to a single word in RX bu�er RAM, and Raw write
pointer is incremented by 1.

6 At the end of last bit of data �eld, Protocol control FSM issues Store data command if the length of data
�eld is not multiple of bytes. Remaining bytes are stored to RX bu�er RAM, and Raw write pointer is
incremented.

7 CAN frame progresses to EOF �eld. In sample point of EOF �eld, received frame is considered valid (if no
error frame occurred). Protocol control FSM issues �Reception valid� command. If received frame
timestamp shall be taken in EOF, it is captured to a capture register.

8 Timestamp is stored from its capture register (by means of Timestamp write pointer), to Timestamp low
and Timestamp high memory words of RX bu�er.

9 If overrun condition did not occur during storing of current frame, frame is commited to memory, Raw
write pointer moves to Commited write pointer and number of frames in RX bu�er (Frame counter) is
incremented. If overrun condition or Release receiver bu�er command did occur during storing of current
frame, frame is not commited to memory, Raw Write Pointer is reverted to Commited Write Pointer and
number of frames in RX bu�er remains unchanged.
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4.2.2 Overrun �ags

RX bu�er maintains two overrun �ags: User overrun �ag and Internal overrun �ag. Both overrun �ags are set when RX

bu�er FSM intents to store a word to RX bu�er RAM, and RX bu�er RAM is full (Overrun condition). Internal overrun

�ag is reset at the end of CAN frame. User overrun �ag is reset by SW writing COMAND[CDO]=1. When the frame

is error-free (no error frame), but overrun condition occured at some point before in the frame (Internal overrun �ag is

set), frame is discarded (not commited) and Write pointers are reverted to their previous commited value.

4.2.3 Received frame timestamp

RX bu�er implements Timestamping of received frames. Such timestamp is created by sampling timestamp input of

CTU CAN FD in sample point of SOF or EOF bits (con�gured by RX_SETTINGS[RTSOP]). In sample point of these

bits, timestamp is captured to capture register. Timestamp is stored to RX bufer RAM from capture register at the

end of CAN frame. As position of Timestamp memory words within RX bu�er RAM is lower than Data words, when

timestamp is about to be stored (in sample point of EOF), Raw write pointer is pointing one memory word behind

last word of CAN frame. Due to this reason, Raw write pointer can't be used to store received frame timestamp, and

dedicated Timestamp write pointer is used. This pointer is loaded by RX bu�er FSM to point to �rst Timestamp word

in RX bu�er RAM.

4.2.4 RX bu�er Parity

If enabled at synthesis time by sup_parity , each RX bu�er memory word has additional parity bit. The parity bit is

stored as the word is being stored to the RX bu�er RAM. When the RX bu�er word is being read, the parity is computed

again and compared with stored parity. If the computed and stored parity are not equal, a �ag is set in Memory registers.

4.2.5 Reading protocol

CAN frame in RX bu�er is read by SW. To read the frame SW executes read accesses to RX_DATA register. There are

two modes (distuiguished by MODE[RXBAM] bit) in which RX bu�er can be read:

� Automated mode (default) - SW must read via 32 bit accesses. When RX_DATA register is read, RX bu�er read

pointer automatically moves to next word.

� Manual mode - SW can read via 8/16/32 bit accesses. When RX_DATA register is read, RX bu�er read pointer is

NOT moved automatically to next word. To move RX bu�er to next word, use must issue COMMAND[RXRPMV]).

This mode can be used in systems which are incapable of executing �atomic� 32 bit accesses, and require reading

by 8 or 16 bit accesses.

Behavior of RX bu�er during reads is described in 4.29. Read pointer is incremented after each word is read, either

manually or automatically (an exception to this rule is when FIFO is empty). RX bu�er supports single reads (Read

indication asserted for one clock cycle) and also continous burst read (Read indication asserted for several consecutive

clock cycles). Since RX bu�er RAM has one clock cycle delay on data output, RAM read address is speculatively

multiplexed between Read pointer and Read pointer + 1 as shown in Figure 4.24. Due to this speculation RX bu�er read

pre-feteches data from next memory word instead of memory word given by Read pointer. This speculation is executed

to support burst read.

56



CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

Table 4.29: RX bu�er - read protocol

Step Action
1 Read pointer points to Frame Format word of most recently stored frame in RX bu�er. Output of RX

bu�er RAM contain Frame Format word.
2 SW reads from RX_DATA register (Frame Format word). Auxiliarly counter is loaded to value of

RWCNT. Read pointer is incremented by 1.
3 SW now knows value of RWCNT (number of remaining words in currently read frame). SW reads from

RX_DATA register RWCNT times. Read Pointer is incremented by 1 and auxiliarly counter is
decremented by 1 after each of these reads.

4 During last read (when auxiliarly counter transits from 1 to 0), Frame counter is decremented by 1.

* Frame format (next frame)                                                                                                                                                                                                    

System clock

Memory Bus - Read

Memory Bus - Address RX_DATA RX_DATA

Memory Bus - Read data Frame Format Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3

RX Buffer read

RX Buffer RAM read data Frame Format Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3 Frame Format (next frame)

RX Buffer RAM address Frame Format Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3 Frame Format* Identifier (next frame)

Read pointer Frame Format Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3 Frame Format (next frame)

Speculative read pointer Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3 Frame Format* Identifier (next frame)

Use speculative pointer

RAM address to RAM read data

RAM read data to Memory bus read data

d h

b c f g

a e

Figure 4.24: RX bu�er - Read pointer speculation

RX bu�er contains Frame counter (readable by SW via RX_STATUS[RXFRC]). Frame counter holds amount of CAN

frames actually stored in RX bu�er. Frame counter is incremented by 1 when a frame is commited to RX bu�er. Since

RX bu�er RAM is read word by word, RX bu�er counts each read word from Memory registers and decrements Frame

counter only when whole frame was read. If new frame is committed at the same time as last word of another frame is

read, Frame counter remains unchanged. Manipulation with Frame counter is described in Table 4.30.

Table 4.30: Frame counter handling

Step Action
1 Frame counter is 0. CAN frame is being received and stored to RX bu�er RAM.
2 Frame ends and it is commited to RX bu�er, Frame Counter is incremented to 1.
3 Read Pointer points to the �rst word of CAN frame (Frame format word). Memory registers issue a read

from RX bu�er. RX bu�er RAM output contains Frame Format word. RX bu�er loads value of RWCNT
(Read word count) to an auxiliarly counter. Frame counter remains 1 and Read Pointer increments and
points to Identi�er word.

4 Memory registers issue RWCNT - 1 number of reads from RX bu�er and Read pointer increments by 1 on
each read. Auxiliarly register decrements by 1 each read.

5 Memory registers issue a read from RX bu�er (reading last word of CAN frame). Auxiliarly register
indicates that last word of frame is read and Frame counter is decremented by 1.
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4.2.6 RX bu�er RAM

If target_technology = 0 (ASIC), clock for RX bu�er RAM are gated if RX bu�er RAM is not written nor read.
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4.3 Frame Filters

File: frame_�lters.vhd

Frame �lters implement following functionality:

� Filter RX frames before storing to RX bu�er based on CAN Identi�er.

� Gate RX bu�er commands when identi�er does not pass Frame Filters.

Frame �lters implement two types of �lters: Bit �lter and Range �lter. There are three instances of Bit �lter (A, B, C),

and one instance of Range �lter. Each instance is selectively synthesizable by sup_�lt_A/B/C or sup_range generics.

If �lter is not synthesized, it is not taken into account during frame �ltering. When no Frame �lter is synthesized, all RX

frames are stored to RX bu�er and no frame is �ltered out.

CAN frame passes Frame �lters if received identi�er passes at least one �lter (logical OR). Filters are considered only

when Acceptance �lter mode is enabled (MODE[AFM] = '1'). When Acceptance �lter mode is disabled, all received

frames are stored to RX bu�er RAM.

Each �lter can be con�gured to accept only given combination of Frame type and Identi�er type via FILTER_CONTROL

register. If received Frame type and Identi�er type does not match accepted Frame type and Identi�er type, it does not

pass �lter even if its identi�er is matching. For description of �lter operation re�er to 4.31 and 4.32. The logic equations

in these tables follow C-like syntax with �&� meaning �logical AND� and �&&� meaning �boolean AND�. (A,B) means

concatenation of vectors A and B where A is MSB. Note that accepted combinations of Accepted Frame types / Identi�er

are one-hot coded in FILTER_CONTROL register and therefore any combination of these settings can be used.

Table 4.31: Bit �lter operation

Accepted Frame
types / Identi�er
types

Received
Identi�er
type

Condition for frame to pass
RX_BASE = Received base identi�er, RX_EXT = Received identi�er
extension, FILTER_X_MASK (A,B,C) = Filter mask, FILTER_X_VALUE
(A,B,C) = Filter value, FR_TYPE = Received frame type (corresponds to
FDF bit), ID_TYPE = Received identi�er type (corresponds to IDE bit)

CAN
2.0
/
Base

Base [(RX_BASE & FILTER_MASK(28:18)) == (FILTER_BASE(28:18) &
FILTER_MASK(28:18))] && (FR_TYPE == CAN 2.0) && (ID_TYPE ==
Base)

Extended not accepted
CAN
FD
/
Base

Base [(RX_BASE & FILTER_MASK(28:18)) == (FILTER_BASE(28:18) &
FILTER_MASK(28:18))] && (FR_TYPE == CAN FD) && (ID_TYPE ==
Base)

Extended not accepted
CAN
2.0
/
Extended

Base not accepted
Extended [(RX_BASE & FILTER_MASK(28:18)) == (FILTER_BASE(28:18) &

FILTER_MASK(28:18))] && [(RX_EXT & FILTER_MASK(17:0)) ==
(FILTER_BASE(17:0) & FILTER_MASK(17:0))] && (FR_TYPE == CAN
FD) && (ID_TYPE == Extended)

CAN
FD
/
Extended

Base not accepted
Extended [(RX_BASE & FILTER_MASK(28:18)) == (FILTER_BASE(28:18) &

FILTER_MASK(28:18))] && [(RX_EXT & FILTER_MASK(17:0)) ==
(FILTER_BASE(17:0) & FILTER_MASK(17:0))] && (FR_TYPE == CAN
FD) && (ID_TYPE == Extended)
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Table 4.32: Range �lter operation

Accepted Frame
types / Identi�er
types

Received
Identi�er
type

Condition for frame to pass
RX_BASE = Received base identi�er, RX_EXT = Received identi�er
extension, FILTER_RAN_LOW = Lower �lter threshold,
FILTER_RAN_HIGH = Upper �lter threshold, FR_TYPE = Received frame
type (corresponds to FDF bit), ID_TYPE = Received identi�er type
(corresponds to IDE bit)

CAN
2.0
/
Base

Base (RX_BASE >= FILTER_RAN_LOW(28:18)) && (RX_BASE <=
FILTER_RAN_LOW(28:18) && (FR_TYPE == CAN 2.0) && (ID_TYPE
== Base)

Extended not accepted
CAN
FD
/
Base

Base (RX_BASE >= FILTER_RAN_LOW(28:18)) && (RX_BASE <=
FILTER_RAN_LOW(28:18)) && (FR_TYPE == CAN FD) && (ID_TYPE
== Base)

Extended not accepted
CAN
2.0
/
Extended

Base not accepted
Extended ((RX_BASE, RX_EXT) >= FILTER_RAN_LOW(28:0)) && ((RX_BASE,

RX_EXT) <= FILTER_RAN_LOW(28:0)) && (FR_TYPE == CAN 2.0)
&& (ID_TYPE == Extended)

CAN
FD
/
Extended

Base not accepted
Extended ((RX_BASE, RX_EXT) >= FILTER_RAN_LOW(28:0)) && ((RX_BASE,

RX_EXT) <= FILTER_RAN_LOW(28:0)) && (FR_TYPE == CAN FD)
&& (ID_TYPE == Extended)

4.4 TXT bu�er

File: txt_bu�er.vhd

TXT bu�er implements following functionality:

� Stores single CAN frame for transmission in internal RAM memory.

� Manages access from HW and SW to its RAM memory.

� Provides status of frame transmission for SW.

Number of TXT bu�ers in CTU CAN FD is con�gurable at synthesis time by txt_bu�er_count. Each TXT bu�er

contains 1 RAM memory. Each TXT bu�er RAM is accessed by SW via Memory registers as described in [1]. SW stores

CAN frame to TXT bu�er. For SW, TXT bu�er RAM is write-only. TXT bu�er RAM is also accessed by Protocol

control FSM and TX arbitrator. TX arbitrator reads parts of CAN frame during TXT bu�er valiation. Protocol control

FSM reads data words from TXT bu�er RAM as they are being transmitted on CAN bus. For Protocol control and TX

arbitrator, TXT bu�er is read-only. TXT bu�er is managed by FSM which is shown in Figure 4.25. CAN frame format

in TXT bu�er is the same as in RX bu�er, and it is described in 3.10. Each TXT bu�er in CTU CAN FD has its own

priority (con�gured by SW in TX_PRIORITY register). Based on priority, TX arbitratror selects TXT bu�er which will

be used for transmission (see 4.5).
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Figure 4.25: TXT bu�er FSM

4.4.1 TXT bu�er commands

Two types of commands can be issued to TXT bu�er: SW commands and HW commands. SW commands are issued by

SW access to TX_COMMAND register. HW commands are issued by Protocol control FSM. Both command types are

described in Table 4.33. Since operation of SW and Protocol control FSM are not synchronized, HW and SW commands

can occur simultaneously. Behavior in such cases is described in Table 4.34. If SW command is applied to TXT bu�er

FSM in state for which it is not valid, it has no e�ect. HW command is never applied in TXT bu�er FSM state for which

it is not valid (there are design assertions to check that).

Table 4.34: TXT bu�er simultaneous HW/SW commands

HW
Com-
mand

SW
Com-
mand

TXT bu�er
state

Result

Lock Set abort Ready TXT bu�er becomes �Abort in progress�, Protocol control attempts
to do do single transmission from thix TXT bu�er.

Unlock -
done

Set abort TX in Progress TXT bu�er is unlocked and becomes �TX OK� since transmission is
successfull.

Unlock -
failed

Set abort TX in Progress TXT bu�er is unlocked and becomes �TX failed� since transmission
failed.

Unlock -
arbitra-
tion lost,
error

Set abort TX in Progress TXT bu�er is unlocked and becomes �Aborted�. No more
transmissions are attempted from this TXT bu�er. In this case SW
command has priority over HW command. Due to this, transmissions
will not go on from thix TXT bu�er.
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Table 4.33: TXT bu�er commands

Command
name

Command
type

Valid TXT
bu�er States

When is command issued

Set ready SW Empty, TX OK,
Aborted, TX
failed

SW stored CAN frame to TXT bu�er RAM and wants to transmit
this frame.

Set empty SW TX OK,
Aborted, TX
failed

SW wants to move TXT bu�er to its inital state after reset.

Set abort SW Ready, TX in
progress, Abort
in progress

SW wants to abort transmission of a frame whose transmission has
been previously requested by Set ready command.

Lock HW Ready Protocol control FSM starts transmitting frame from TXT bu�er.
Unlock -
done

HW TX in progress,
Abort in
progress

Protocol control FSM successfully transmitted frame from TXT
bu�er.

Unlock -
error

HW TX in progress,
Abort in
progress

Error frame occurred, Protocol control stops transmitting from
TXT bu�er.

Unlock -
arbitration
lost

HW TX in progress,
Abort in
progress

Arbitration was lost, Protocol control stops transmitting from TXT
bu�er.

Unlock
failed

HW TX in Progress,
Abort in
progress

A frame was re-transmitted number of times unsucesfully (either
arbitration was lost or error frame occurred) and Retransmitt
counter reached Retransmitt threshold. Frame transmission will not
be attempted anymore.

4.4.2 TXT bu�er RAM

File: txt_bu�er_ram.vhd

TXT bu�er RAM is written by SW (port A) and read by Protocol Control FSM (port B). TXT bu�er RAM can be

in one of two states: Unlocked and Locked. TXT bu�er FSM states corresponding to Locked and Unlocked state of

TXT bu�er RAM are demonstrated in Figure 4.25. When TXT bu�er is unlocked, it is not acessed by Protocol control

(nor TX arbitrator) as there is no frame transmission/validation from this TXT bu�er, and SW can write to TXT bu�er

via Memory registers. When TXT bu�er is Locked, it was either marked as Ready, or validated by TX arbitrator, or

transmission is in progress from this TXT bu�er. When TXT bu�er is locked, SW can not write to TXT bu�er RAM,

and attempts to write have no e�ect.

4.4.3 TXT bu�er - Transmission availability

When TXT bu�er FSM is in Ready state, it is �Available� for transmission from TX arbitrators point of view. However,

if TXT bu�er receives Set abort command, it become �Unavailable� for transmission in the same clock cycle as Set abort

command is active (txtb_available drops low). In this clock cycle, TXT bu�er FSM is still in Ready state, and it will

move to Aborted (or Abort in progress) in the following clock cycle. This combinatorial path from Set abort command

to output of TXT bu�er is necessary to avoid hazards on TXT bu�er selection as explained in 4.5.10.
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4.4.4 TXT bu�er Parity

If enabled at synthesis time by sup_parity , each memory word of TXT bu�er has additional parity bit. When the word

is being written, the parity bit is computed and stored. When the word is being read by TX Arbitrator or Protocol Control

FSM, the parity is computed again and compared with the read parity. If the computed parity and the read parity are

not equal, the behavior is following:

� If the error is in Frame format, Ident�er, Timestamp Low or Timestamp High words, the error occured as these

4 words were being read during TXT bu�er validation. In this case, TXT bu�er validation fails, and TXT bu�er

moves to Parity Error state. Transmission from this TXT bu�er is never attempted.

� if the error is in some of the Data words, the parity error is detected as the word is read (during transmission of

CAN frame). In this case, Protocol Control FSM transmits Error frame on the CAN bus, and TXT bu�er moves

to Parity Error state.

4.4.5 TXT bu�er - Use cases

Table 4.35: TXT bu�er - sucessfull transmission

Step SW Action HW Action / State
1 SW �lls TXT bu�er RAM. TXT bu�er is in Empty state.
2 SW issues Set ready command. TXT bu�er moves to Ready state.
3 TX arbitrator validates TXT bu�er for transmission and indicates this

to Protocol control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command, TXT bu�er moves to TX
inprogress and Protocol control starts transmission from TXT bu�er.

4 Frame transmission ends successfully and Protocol control issues
Unlock - done command. TXT bu�er moves to TX OK state.

5 SW reads state of TXT bu�er
and �nds out that transmission
ended succesfully.
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Table 4.36: TXT bu�er - Abort

Step SW Action HW Action / State
1 SW �lls TXT bu�er RAM. TXT bu�er is in Empty state.
2 SW issues Set ready command. TXT bu�er moves to Ready state.
3 TX arbitrator validates TXT bu�er for transmission and

signals to Protocol control there is a valid TXT bu�er for
transmission. On third bit of Intermission or when bus is
idle, Protocol control issues Lock command, TXT bu�er
moves to TX in progress. Protocol control starts
transmission from TXT bu�er.

4 During transmission SW issues Set abort
command to TXT bu�er.

TXT bu�er moves to Abort in progress.

5 If error frame occurs or arbitration is lost, TXT bu�er moves
to Aborted state. If frame transmission �nished succesfully,
TXT bu�er moves to TX OK state.

6 SW reads state of TXT bu�er and �nds
out whether transmission was aborted or
it ended succesfully.

Table 4.37: TXT bu�er - transmission failed

Step SW Action HW Action / State
1 SW �lls TXT bu�er RAM. SW con�gures

retransmitt limit to 5 and enables
retransmitt limitation.

TXT bu�er is in Empty state.

2 SW issues Set ready command. TXT bu�er moves to Ready state.
3 TX arbitrator validates TXT bu�er for transmission and

indicates available TXT bu�er for transmission to Protocol
control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command, TXT bu�er moves to
TX in progress and Protocol control starts transmission from
TXT bu�er.

4 An error frame occurs or arbitration is lost, Protocol control
issues Unlock - error or Unlock - arbitration lost command.
TXT bu�er moves to state Ready. Retransmitt counter is
incremented by 1.

Steps 3-4 repeat until retransmitt counter reaches 5
5 On 5th retransmission (retransmitt counter = 5), error

occurs. Protocol control issues Unlock - failed command.
TXT bu�er FSM moves to TX failed state.

6 SW reads state of TXT bu�er and �nds
out that transmission failed.
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Table 4.38: TXT bu�er - Simultaneous Set abort and Lock

Step SW Action HW Action / State
1 SW �lls TXT bu�er RAM. TXT bu�er is in Empty state.
2 SW issues Set ready command. TXT bu�er moves to Ready state.
3 SW decides to abort transmission of this

frame and issues Set abort command.
TX arbitrator validates TXT bu�er for transmission and
indicates available TXT bu�er for transmission to Protocol
control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command. By coincidence, Set
abort command (SW) and Lock command (HW) are active
in the same clock cycle. TXT bu�er moves to Abort in
progress and Protocol control starts transmission from TXT
bu�er.

4 An error frame occurs or arbitration is lost, Protocol control
issues Unlock - error or Unlock - arbitration lost command.
TXT bu�er moves to state Aborted.

5 SW reads state of TXT bu�er and �nds
out that transmission was aborted.
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4.5 TX arbitrator

File: tx_arbitrator.vhd

TX arbitrator implements following functionality:

� Picks TXT bu�er for transmission.

� Loads CAN frame metadata and Identi�er from TXT bu�er, and provides them to CAN core for transmission.

� Checks parity of Metadata, Identi�er and Timestamp words read from TXT bu�er, and signals to TXT bu�er that

it contains corrupted data.

� Executes comparison of timestamp input with transmitted frame timestamp and determine moment of CAN frame

transmission.

� Signals to CAN core that CAN frame was validated, and can be locked for transmission.

� Holds index of TXT bu�er from which CAN core is actually transmitting.

� Detects change of TXT bu�er between two consecutive transmissions.

TX arbitrator block diagram is shown in Figure 4.26.
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Figure 4.26: TX arbitrator block diagram

4.5.1 TXT bu�er validation process

With regards to processing by TX arbitrator, each TXT bu�er can be in one of states described in Table 4.39. TXT bu�er

validation process starts when Priority decoder picks highest priority Available TXT bu�er (such TXT bu�er becomes

�Selected�) for transmission (see 4.5.2). Validation process is described in 4.40. An FSM controlling the selection is

shown in 4.27. Note each state of TXT bu�er FSM which is part of TXT bu�er validation lasts for two clock cycles due

to wait state. Such wait state is inserted to cover delay of TXT bu�er RAM.

If index of Selected TXT bu�er changes (due to another higher priority TXT bu�er becoming Ready, or change of TXT

bu�ers priorities) during validation process, or after validation process was �nished (TX arbitrator FSM is in Validated

state), TXT bu�er validation process restarts with newly Selected TXT bu�er.

If Validated TXT bu�er suddenly becomes Unavailable (due to Set abort SW command), TX arbitrator signals immediately

(in the same clock cycle) to Protocol control FSM that there is no Validated TXT bu�er (this is done to avoid control

hazards on TX frame datapath, and it is further explained in 4.5.10) and TX arbitrator FSM moves to Idle state. Several

use-cases are explained in 4.41 and 4.42.
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When there is a Validated TXT bu�er, Protocol control FSM issues Lock command during bus idle, or third bit of

intermission. In such case, TX arbitrator goes to Locked state and TXT bu�er becomes Used from TX arbitrators point

of view (TXT bu�er FSM itself goes to TX in progress). Protocol control then transmitts the frame from this TXT bu�er,

and upon the end of transmission issues Unlock command. TXT bu�er then becomes either Available or Unavailable

(see 4.4.1).

If during TXT bu�er validation process, TX Arbitrator detects parity error in Metadata, Identi�er or Timestamp words, it

immediately aborts validation of such TXT bu�er, and signals this to TXT bu�er. If TXT bu�er is �Used� (transmission

is being executed from it), and TX Arbitrator detects that parity is corrupted on a data word which is being transmitted,

it also signals this to TXT bu�er.
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Figure 4.27: TX arbitrator FSM

Table 4.39: TX arbitrator - TXT bu�er processing

Filter name Description
Unavailable TXT bu�er is Unavailable when it is not Available for transmission as de�ned in 4.4.3. Such a TXT

bu�er is ignored by TX arbitrator.
Available TXT bu�er is Available when it is Available for transmission as de�ned in 4.4.3.
Selected TXT bu�er is Selected when it is Available with highest priority out of all Available TXT bu�ers.
Validated TXT bu�er is Validated when it is Available for transmission, its Timestamp comparison has been

executed and Metadata from TXT bu�er RAM (Frame format word) has been loaded to capture
registers for CAN core.

Used TXT bu�er is Used after CAN core issues Lock command on Validated TXT bu�er and is
transmitting from this TXT bu�er.
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Table 4.40: TX arbitrator operation

Step External action (SW or external
components)

HW action

1 No TXT bu�er is Available.
2 SW �lls TXT bu�er 1 and issues

Set ready command to this TXT
bu�er.

TXT bu�er 1 FSM goes to Ready state is and therefore Available
for TX arbitrator. As this is only TXT bu�er which is Available,
Priority decoder selects it as highest priority Available TXT bu�er.

3 TX arbitrator FSM loads Lower timestamp word from TXT bu�er
1 RAM, and stores it to auxiliarly register.

4 TX arbitrator FSM loads Upper timestamp word from TXT bu�er
1 RAM and executes comparison of timestamp input and
timestamp of CAN frame in TXT bu�er 1 (Lower word is in
auxiliarly register and Upper word is on output of TXT bu�er 1
RAM). When timestamp is lower than timestamp of CAN frame
in TXT bu�er 1, TX arbitrator waits, otherwise it proceeds to step
5.

5 timestamp is incrementing (as it
counts running time within a
system) and it reaches value of
CAN frame timestamp in TXT
bu�er 1.

TX arbitrator detects timestamp input is now higher than
timestamp of CAN frame in selected TXT bu�er. At this moment
TX arbitrator proceeds with frame validation.

6 TX arbitrator FSM loads TX frame metadata from TXT bu�er 1
RAM (Frame format word) to double-bu�er registers. These are
not visible to CAN Core, they hold metadata internally.

7 TX arbitrator FSM loads TX frame identi�er from TXT bu�er 1
RAM (Identi�er word) to Identi�er capture register. At the same
clock cycle, TX arbitrator FSM loads metadata from double-bu�er
registers to capture registers on output of TX Arbitrator. Re�er to
4.5.9 for explanation.
TXT bu�er 1 becomes �validated� and TXT arbitrator signals that
there is a valid TX frame for transmission to CAN core.

8 When Protocol control FSM is in sample point of third bit of
intermission or bus idle, it issues Lock command to TXT bu�er 1
(TXT bu�er 1 becomes Used, TXT bu�er FSM moves to TX in
progress state) and TX arbitrator becomes Locked.

9 TX arbitrator is Locked and it is waiting for Unlock command. No
TXT bu�er validation is in progress. If another higher priority TXT
bu�er became Available this has no e�ect as frame transmission is
already in progress.

10 Protocol control transmitts frame from TXT bu�er 1, and issues
Unlock - done command to TXT bu�er 1 (TXT bu�er 1 becomes
Unavailable and TXT bu�er FSM moves to TX OK). Since TXT
bu�er 1 was only TXT bu�er which was Available before the
transmission, now there is no TXT bu�er which is Available.
Therefore no TXT bu�er is Selected, and no TXT bu�er validation
is in progress. TX arbitrator signals there is no Validated TXT
bu�er to CAN Core.

11 SW reads state of TXT bu�er 1
and �nds out whether transmission
was aborted or it ended succesfully.
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Table 4.41: TX arbitrator - use-case 1

Step External action (SW or external
components)

HW Action

1 SW con�gures priority 1 to TXT
bu�er 1 and priority 2 to TXT
bu�er 2. SW �lls TXT bu�er 1 and
TXT bu�er 2 by CAN frames. SW
issues Set ready command to TXT
bu�er 1.

TXT bu�er 1 FSM goes to Ready state and therefore TXT bu�er
1 becomes Available from TX arbitrators point of view. Since this
is only Available TXT bu�er, it becomes Selected.

2 TX arbitrator performs validation process (loads timestamp words,
executes timestamp comparison, loads metadata and identi�er)
and TXT bu�er 1 becomes Validated. TX arbitrator signals to
CAN core that there is validated TXT bu�er for transmission.

3 SW Issues Set ready command to
TXT bu�er 2.

TXT bu�er 2 FSM goes to Ready state and therefore TXT bu�er
2 becomes Available from TX arbitrators point of view. As TXT
bu�er 2 has higher priority than TXT bu�er 1, TXT bu�er 2
becomes Selected by Priority decoder.

4 TXT bu�er validation process restarts with TXT bu�er 2. During
validation of TXT bu�er 2, TXT bu�er 1 remains Validated (TXT
bu�er 1 is still Available). If during validation process of TXT
bu�er 2, Protocol control issued HW Lock command, transmission
would still start from TXT bu�er 1.

5 TX arbitrator �nishes validation process (loads timestamp words,
executes timestamp comparison, loads metadata) of TXT bu�er 2.
At the end, TXT bu�er 2 becomes Validated, and TXT bu�er 1
(which was Validated till now) becomes Available.

6 Protocol control issues Lock command and since TXT bufer 2 is
now Validated, transmission starts from TXT bu�er 2. TX
arbitrator becomes Locked.

Note: The implementation performs validation of a TXT bu�er while another TXT bu�er is still Validated. Only

when validation process is �nished, index of Validated TXT bu�er will be changed to the new TXT bu�er. The

reason is following: If TXT bu�er is validated, and SW decides to issue Set ready to another TXT bu�er which

is higher priority, Lock command might arrive just slightly after this moment (SW and Protocol control have

no synchronisation). If �rst TXT bu�er did not remain validated during validation process of new TXT bu�er,

tran_frame_valid signal would drop low before the validation process of second TXT bu�er is �nished. This

would cause that for short time, Protocol control would not have any TXT bu�er available for transmission, while

actually two TXT bu�ers are in Ready state. This e�ect is undesirable.

Note: Due to meta-data double bu�ering, validated TXT bu�er is swapped atomically (TXT bu�er index, identifer

and loaded metadata) from Protocol control point of view. Thus it can never happen that inconsistent frame is

transmitted (e.g. metadata from one TXT bu�er and data words from another TXT bu�er).

Note: This behaviour is necessary, since TXT bu�er which is Validated suddenly becomes Unavailable due to Set Abort

command. If tran_frame_valid signal did not drop low immediately, it could happend that Protocol control

would issue Lock command on a TXT bu�er which was Unavailable (in Aborted state).
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Table 4.42: TX arbitrator - use-case 2

Step External action (SW or external
components)

HW Action

1 SW con�gures TXT bu�er 1 priority to 1,
and TXT bu�er 2 priority to 2. SW �lls
TXT bu�er 1 and TXT bu�er 2 RAMs by
CAN frames. SW Issues Set ready
command to TXT bu�er 1 and TXT
bu�er 2 simultaneously.

TXT bu�ers 1 and 2 become Available, and TXT bu�er 2
becomes Selected because it has higher priority than TXT
bu�er 1.

2 TX arbitrator performs TXT bu�er 2 validation process
(loads timestamp words, executes timestamp comparison,
loads metadata and identi�er) and TXT bu�er 2 becomes
Validated. TX arbitrator signals to CAN core that there is
Validated TXT bu�er for transmission.

3 SW Issues Set abort command to TXT
bu�er 2.

TXT bu�er 2 which is now Validated becomes Unavailable.
TX arbitrator immediately (in the same clock cycle) signals
to CAN core that no TXT bu�er is available for transmission
(tran_frame_valid signal drops low).

4 Since TXT bu�er 1 is now only Available TXT bu�er, it
becomes Selected.
TX arbitrator proceeds with validation of TXT bu�er 1, and
upon its end TXT bu�er 1 becomes Validated. TX arbitrator
signals that there is a frame available for transmission.

Table 4.43: TX arbitrator - use-case 3

Step External action (SW or external
components)

HW Action

1 SW stores a frame to a TXT bu�er
1 and issues Set ready command.

TXT bu�er 1 becomes available from TX Arbitrator point of view.

2 TX Arbitrator starts validating TXT bu�er 1. It reads out
Metadata, Identi�er, Timestamp Low/High words. During each of
these words, it checks that parity of word being read is correct. If
not, it stops validation of this TXT bu�er, and it signals this to
TXT bu�er 1.

3 TXT bu�er 1 moves to Parity Error state.

4.5.2 Priority decoder

File: priority_decoder.vhd

Priority decoder selects highest priority TXT bu�er from all Available TXT bu�ers. Such TXT bu�er becomes Selected.

Priority of TXT bu�ers is given by SW (TX_PRIORITY register). If no TXT bu�er is Available, Priority decoder signals

it on its output, and no TXT bu�er is Selected (TXT bu�er validation does not start). If two Available TXT bu�ers

have equal priority, TXT bu�er with lower index is selected. Priority decoder provides index of Selected TXT bu�er on

its output.

Priority decoder is implemented as comparator tree with 3 levels (see Figure 4.28). Each level contains so called �decoder

cells�. Decoder cell selects higher priority TXT bu�er from two TXT bu�ers. Each decoder cell behaves like so:
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� When only one of the two TXT bu�ers is Available it is automatically selected, its index is propagated as winner

of comparison and �Available� output of this decoder cell is high.

� When no TXT bu�er input is Available, output_valid signal is low.

� When both TXT bu�er inputs are Available, output_valid signal is high and index TXT bu�er with higher priority

is propagated as winner.

Priority decoder supports up to 8 input TXT bu�ers. If less than 8 TXT bu�ers are con�gured (see txt_bu�er_count),
unused inputs are tied to zeroes.
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Figure 4.28: Priority decoder block diagram

72



CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

4.5.3 TXT bu�er change between transmissions

Table 4.44: Selected TXT bu�er changed between transmissions

Step SW action HW action / State
1 SW �lls TXT bu�er 1 RAM. SW enables

retransmitt limitation and con�gures
Retransmitt limit to 5.

TXT bu�er 1 FSM is in Empty State.

2 SW issues Set ready command to TXT
bu�er 1.

TXT bu�er 1 FSM moves to Ready state. TXT bu�er 1
becomes Available from TX arbitrators point of view.

3 TX arbitrator performs validatation and TXT bu�er 1
becomes Validated, TX arbitrator signals this to CAN core.
CAN core issues Lock command and starts transmitting from
TXT bu�er 1. TXT bu�er 1 becomes Used and TXT bu�er
1 FSM goes to TX in progress state

4 An error frame occurs or arbitration is lost. Protocol control
signals Unlock - arbitration lost or Unlock - error frame�
commands. TXT bu�er 1 becomes Unavailable , TXT bu�er
1 FSM moves to Ready and Retransmitt counter is
incremented to 1.

5 SW �lls TXT bu�er RAM 2. SW Issues
Set ready command to TXT bu�er 2.

TXT bu�er 2 moves to Ready state. Lets assume TXT
bu�er 2 has higher priority than TXT bu�er 1.

6 Now there are two Available TXT bu�ers (1 and 2). TXT
bu�er 2 becomes Selected by Priority decoder because it has
higher priority.

7 TX arbitrator performs validation and TXT bu�er 2 becomes
Validated, TX arbitrator signals this to CAN core.

8 CAN core issues Lock command, TXT bu�er 2 becomes
Used (transmission starts by CAN core). At this moment
Retransmitt counter is cleared because TXT bu�er used for
current transmission (TXT bu�er 2) is di�erent from the one
for previous transmission (TXT bu�er 1). (counting
retransmissions on TXT bu�er 2 shall not include one
previous failed transmission from TXT bu�er 1, because it is
di�erent CAN frame being transmitted).

4.5.4 TX Arbitrator corner-cases

TX arbitrator must react on following events which are all not synchronized:

� Change of TXT bu�er priorities by SW -> possibly change of Selected TXT bu�er.

� Change of TXT bu�er state (due to SW commands) -> possibly change of Selected TXT bu�er.

� Lock command from Protocol control.

Handling of these events is resolved like so:

� Lock command shall never occur when TX Arbitrator FSM is Idle.

� Unlock command shall never occur when TX Arbitrator FSM is not Locked.
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� Lock command shall only occur when there is TXT bu�er available for transmission, or when it was available for

transmission in previous clock cycle. It might happend, that Lock command and Set abort command are active

simultaneously. Due to Set abort command, it might be that only Available TXT bu�er becomes immediately

unavailable, therefore Lock command is active when no Available TXT bu�er is signalled. This is OK since TXT

bu�er FSM resolves simultaneous Set abort and Lock command.

� Lock command occurs at the same time as Selected TXT bu�er is changed. Lock command shall have priority,

and TX Arbitrator FSM shall become Locked.

� TXT bu�er validation process is about to be �nished, but Lock command occurs. Lock command shall have

priority, TX Arbitrator FSM shall become Locked and Metadata, Identi�er capture registers shall not be preloaded!

4.5.5 TXT bu�er addressing

During TXT bu�er validation process, TX arbitrator is accessing TXT bu�er memories and loads Frame format, Identi�er,

Timestamp low and Timestamp High words, therefore TXT bu�er RAM address on port B is given by TX arbitrator

FSM.

During transmission when TX arbitrator is Locked, TX arbitrator holds index of Used TXT bu�er. During this time,

Protocol control FSM provides address of memory word from which it reads relevant data word for transmission. TX

arbitrator uses this address to drive TXT bu�er address and index of Used TXT bu�er to multiplex read data. Data

memory words (see 3.10) are addressed during transmission of data �eld and Protocol control transmitts value of data

�eld from these memory words. Each next 4 bytes of data �eld correspond to one memory word in TXT bu�er RAM.

From output of TXT bu�er RAM, this memory word is loaded to TX shift register and transmitted from there (see 4.1.1).

Therefore Protocol control provides address of data word with su�cient reserve to cover latency of TXT bu�er RAM

as is shown in Table 4.45. Metadata and Identi�er for transmission are available from capture registers in TX arbitrator

which were loaded during TXT bu�er validation process.

Table 4.45: TXT bu�er RAM adressing during transmission

CAN frame �eld Memory word in TXT bu�er
addressed by Protocol control

Meaning of data loaded to TX shift register

DLC Data word 0 data �eld bytes 0 .. 3
data �eld byte N * 4 - 1 Data word N + 1 data �eld bytes (N * 4) to (N + 1) * 4

4.5.6 TXT bu�er RAM access

TXT bu�er RAM has clock gating implemented if target_technology = 0 (ASIC). In such case, clocks are enabled only

when there are write (by user) or read accesses (by TX Arbitrator or Protocol control FSM) to RAM. If TX Arbitrator

is performing TXT bu�er validation process, the clocks are ungated during this process since TX Arbitrator is reading

metadata words from TXT bu�er RAM. If Protocol control FSM is reading data words (during transmission of data �eld),

TXT bu�er RAM clocks are ungated when new word shall be read (when read pointer is updated by Protocol control

FSM).

4.5.7 TX frame timestamp comparison

Part of TXT bu�er validation process is comparison of timestamp input with timestamp of CAN frame in TXT bu�er

which is currently being validated. If timestamp input is lower than timestamp of CAN frame in currently validated
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TXT bu�er, validation process is paused. When timestamp input is equal to, or higher than timestamp of CAN frame

in currently validated TXT bu�er, TXT bu�er validation proceeds. If during this time index of Selected TXT bu�er

changes, validation process is restarted.

Comparison of timestamps provides the Time triggered transmission functionality as is described in 9.2 of [1]. Only when

timestamp input passes (desired moment of transmission passes), TXT bu�er is admited for transmission to CAN core.

This does not mean that CAN core will transmit the frame immediately! CAN core will transmitt such frame in nearest

bus idle, or when it samples dominant bit during third bit of intermission. Since TXT bu�er validation process takes 6

clock cycles, timestamp input must reach TX frame timestamp at latest 6 clock cycles of System clock before sample

point of a bit to be considered for transmission from following bit on CAN bus. Mismatch between the time when frame

validation �nishes due to transmitted frame timestamp passing, and sample point of SOF bit can be up to two bit times

as is demonstrated in Figure 4.29. This situation can be avoided if change of time is synchronized in a system with

su�ciently large period of counting on timestamp input (close to Bit time period).

Bit time segment TSEG1 TSEG2 TSEG1 TSEG2 TSEG1 TSEG2

Protocol control Idle SOF

Lock

TXT buffer FSM state Ready TX in progress

CAN TX

Timestamp input 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

TX frame timestamp 15

Timestamp passed

TXT Buffer validated
TXT buffer validation finished

Nearly two bit times between reaching desired transmission time and sample point of SOF

a e

c

d

b f

Figure 4.29: Time triggered transmission

Consider having two TX frames with timestamps 10 (in TXT bu�er 1) and 50 (in TXT bu�er 2). Lets assume that TXT

bu�er 2 has higher priority, and it is therefore Selected and validation process is in progress. It �nishes its validation when

timestamp input becomes 50. Although CAN frame in TXT bu�er 1 has lower timestamp, it is transmitted after frame

from TXT bu�er 2 because TXT bu�er 2 has higher priority! Therefore TXT bu�er priority is at any moment considered

�rst during TXT bu�er selection and CAN frame timestamp is considered only from Selected TXT bu�er.

4.5.8 Lock and Unlock commands

Protocol control FSM issues Lock command in third bit of intermission (when it samples dominant bit) or during bus

idle when there is a Validated TXT bu�er available. In such case, CTU CAN FD becomes transmitter of the following

CAN frame. After Lock command, TX arbitrator becomes Locked. If there is no TXT bu�er Validated so far and TXT

bu�er becomes Validated just slightly after Protocol control samples dominant bit during third bit of intermission or bus

idle, unit becomes receiver and frame from Validated TXT bu�er is not transmitted. If suspend transmission �eld is

transmitted and Protocol control samples dominant bit, Protocol control does not issue Lock command and becomes

receiver of following frame.

4.5.9 Metadata double-bu�ering

During TXT bu�er validation process, TX arbitrator �rst reads Frame format word from TXT bu�er RAM and stores it

in internal registers which are invisible to CAN core. In the next step TX arbitrator reads Identi�er word from TXT bu�er

RAM and stores it to capture register which is available to CAN core. At the same time internal registers with metadata

are moved to capture registers for metadata. Therefore, reading of metadata from TXT bu�er RAM is double-bu�ered.

Both identi�er and metadata available for CAN core are changed at once (atomically), therefore it will never happend that
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Identi�er in capture registers corresponds to di�erent CAN frame than metadata in capture registers. This is necessary

as when there is Validated TXT bu�er, another TXT bu�er validation process can be in progress. In change was not

atomic, CAN core could issue Lock command and transmitt e.g. ID from TXT bu�er 1 and metadata from TXT bu�er

2.

4.5.10 TX datapath hazard protection

TX frame datapath (TX arbitrator + TXT bu�ers) are both manipulated by SW and HW commands simultaneously. This

fact opens question of hazards susceptibility. Such a hazard would occur, when e.g. TXT bu�er FSM moved to Aborted

state after Set abort command, but Protocol control FSM still managed to issue Lock command and start transmission

from this TXT bu�er. In such case, Protocol control FSM would transmitt from TXT bu�er which is Aborted (and

therefore content of its RAM can be modi�ed by SW). Due to combinatorial path between Set abort and indication of

Validated TXT bu�er, it never happends that when Set abort command is issued to a TXT bu�er, Protocol control FSM

would issue Lock command, therefore this situation will never occur. The relevant combinatorial path is shown in Figure

4.30.
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Figure 4.30: TX datapath hazard protection

4.5.11 TX Abort + Retransmitt clear

TODO: This feature is not yet designed! If TXT bu�er which is currently Validated or Used becomes �Aborted�, then

retransmitt counter should be also cleared. It can happen that user will abort bu�er, replace CAN frame within this

bu�er and put ready again. In such a case, retransmitt counter should count only retransmissions of new frame! This

would become epecially important if we went for generic amount of TXT bu�ers! If con�g with only 1 TXT bu�er was

used, then any abort in actual implementation leaves retransmitt counter untouched and any new frame would start with

this value of retransmitt counter... This could be implemented like so: If TXT bu�er FSM moves to Aborted, it gives

a signal. If last TXT bu�er that was used for transmission (not Selected one because when abort is applied on TXT

bu�er, it will not be Selected!), is equal to index of TXT bu�er that just moved to Abort, then retransmitt counter will

be cleared. This still needs to be evaluated.
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4.6 Interrupt Manager

File: int_manager.vhd

Interrupt manager implements following functionality:

� Captures occurence of events/conditions within CTU CAN FD to Interrupt status register.

� Interrupt masking and enabling.

� Generates of level-based Interrupt output.

Occurence of events within CTU CAN FD is captured to Interrupt status register (INT_STAT) register when correspond-

ing interrupt is unmasked. When Interrupt is masked, correponding event is ignored. Interrupt mask is set by writing

logic 1 to corresponding bit of INT_MASK_SET register. Interrupt mask is cleared by writing logic 1 to corresponding

bit of INT_MASK_CLR register. When a bit in Interrupt status register is set, it causes int output of CTU CAN FD to

go high when this interrupt is enabled. A bit in Interrupt status register is cleared by writing logic 1 to corresponding bit

in INT_STAT register. Value of int output is given by logical OR of all enabled interrupts which have Interrupt status

equal to logic 1. Interrupt output is registered to be glitch free. Interrupt is enabled by writing logic 1 to corresponding

bit of INT_ENA_SET register. Interrupt is disabled by writing logic 1 to corresponding bit of INT_ENA_CLR register.

When Interrupt status shall be set at the same clock cycle by an internal event of CTU CAN FD and cleared by write

to INT_STAT register, Interrupt will be set (set has priority over clear). Block diagram of single interrupt datapath is

shown in Figure 4.31. Available types of Interrupts are described in [2].
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Figure 4.31: Single interrupt datapath
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4.7 Prescaler

File: prescaler.vhd

Prescaler implements following functionality:

� Measures Time quanta (for both nominal and data bit rates).

� Measures Bit segments (Sync_Seg, Prop_Seg, Phase_Seg1 and Phase_Seg2).

� Hard synchronisation and resynchronisation as de�ned in [1].

� Checks if edge is valid for synchronisation (only one edge between two sample points).

� Generates TX trigger and RX triggers for each stage of pipeline.

� Switches between nominal and data bit rates.

Prescaler block diagram is shown in Figure 4.32.
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Figure 4.32: Prescaler block diagram

CAN FD standard ([1]) distuiguishes two bit rates: nominal and data. CTU CAN FD implementation distuighushes 3 bit

rate types as shown in Table 4.46. Protocol Control FSM con�gures correct bit rate in according parts of CAN frame as

explained in [1].

Table 4.46: Bit-Rate types

Bit rate type Corresponding [1]
bit rate

Description

Nominal Nominal Nominal bit rate for both transmitter and receiver.
Data Data Data bit rate for receiver of CAN FD frame.
Secondary Data Data bit rate for transmitter of CAN FD frame. Secondary sampling

point is used to detect bit error.

Prescaler contains separate logic for both bit rates (nominal and data). Logic for Secondary is the same as for Data.

During bits where bit rate is switched, logic for both bit rates is enabled simultaneously, otherwise only logic for actual

bit rate is enabled.
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4.7.1 Bit rate con�guration

Bit rates (nominal and data) are con�gured by SW when CTU CAN FD is disabled (SETTINGS[ENA] = '0') in registers

BTR (nominal) and BTR_FD (data). BTR and BTR_FD registers are writable only when SETTINGS[ENA]='0',

otherwise write access to these registers has no e�ect. Timing parameters for each bit rate are listed in Table 4.47.

Table 4.47: CTU CAN FD bit rate con�guration

Parameter name Abbreviation Description
Bit rate prescaler BRP Time quanta = Bit rate prescaler * System clock period
Synchronisation
segment length

SYNC Length of Synchronisation segment is always 1 time quanta.

Propagation segment
length

PROP Con�gured in multiples of time quanta.

Phase 1 segment length PH1 Con�gured in multiples of time quanta.
Phase 2 segment length PH2 Con�gured in multiples of time quanta.
Synchronisation jump
width

SJW Con�gured in multiples of time quanta.

4.7.2 Bit time counters

File: bit_time_counters.vhd

Bit time counters module contains two counters: Time quanta counter and Segment counter. There are two intstances

of Bit time counters module, nominal (NBTCM) and data (DBTCM).

Time quanta counter measures length of time quanta, and provides information that time quanta has elapsed (tq_edge_nbt/dbt=1).
Time quanta has elapsed when Time quanta counter is equal to Bit rate prescaler (therefore dividing the frequency of

System clock by Bit rate prescaler). When Bit rate prescaler is 1, tq_edge_nbt/dbt is active continously, Otherwise

it is active one clock cycle at the end of time quanta. When Bit rate prescaler is 1, time quanta is equal to System clock

period, and Time quanta counter is not running.

Segment counter counts number of time quanta of actual bit segment (counts only when tq_edge_nbt/dbt=1).
Prescaler distuiguishes two bit segments: TSEG1 (Sync_Seg + Prop_Seg + Phase_Seg1 parts of bit) and TSEG2

(Phase_Seg2 part of bit). Segment counter counts from 0, and it is restarted upon the end of previous segment or

upon hard synchronisation. Segment counter for nominal(data) bit rate shall never over�ow during nominal(data) bit

rate. Segment counter for nominal bit rate may over�ow during data bit rate, and Segment counter for data bit rate

may over�ow during nominal bit rate. Current bit rate is determined by Protocol control FSM based on CAN frame �eld

being transmitted.

NBTCM is enabled always, apart from situations when CTU CAN FD is disabled. This is to make sure, that if error is

detected during data bit rate (DBTCM is being used), NBTCM will be available for measuring duration of Ph2 ASAP

after error was detected. DBTCM is enabled only during data bit rate. During bits of CAN frame where bit rate is

switched, both NBTCM and DBTCM are running. When NBTCM or DBTCM are disabled, none of its both counters

are running (to save power). Both counters are erased when bit time segment ends to force alignment of nominal and

data time quanta in the moment of bit rate switch.

4.7.3 Bit segment meter

File: bit_segment_meter.vhd
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Bit segment meter module measures length of bit time segments (TSEG1 and TSEG2). Bit segment meter module

maintains Expected segment length register (ESLR). ESLR contains number of time quanta that current bit segment

shall last for. When current bit segment ends, ESLR is loaded with length of following bit segment. Loading of

ESLR is shown in Figure 4.33 for TSEG1 = 10 time quanta, TSEG2 = 5 time quanta and BRP = 2. When positive

resynchronisation occurs (see [1]), ESLR is increased (TSEG1 segment is lengthed) as in Figure 4.34. When negative

resynchronisation occurs (see [1]), ESLR is decreased (TSEG2 is shortened). All rules for loading ESLR are described in

4.48.

Table 4.48: Expected segment length register

Occurs when Loaded to value Description
End of segment TSEG1 due to
Segment counter equal to Expected
segment length register - 1.

PH2 Regular end of segment, no
synchronisation.

End of segment TSEG2 due to Segment
counter equal to Expected segment length
register - 1.

SYNC + PROP + PH1 Regular end of segment, no
synchronisation.

Positive resynchronisation with phase error
<= SJW.

SYNC + PROP + PH1 + Segment
counter

Segment counter = phase
error in this case, therefore
overall efect is as if TSEG1
was re-started with SYNC
completed as in [1].

Positive resynchronisation with phase error
> SJW.

SYNC + PROP + PH1 + SJW Lengthening of TSEG1 by
SJW.

Negative resynchronisation with phase
error <= SJW.

SYNC + PROP + PH1 - 1 Immediate end of segment.
TSEG2 ends, therefore
Expected segment length
register is preloaded with
length of TSEG1 - 1 (the
same e�ect as hard
synchronisation).

Negative resynchronisation with phase
error = SJW + 1.

SYNC + PROP + PH1 Immediate end of segment.
TSEG2 ends since magnitude
of phase error is equal to
amount of SJW. Length of
enxt segment is preloaded.

Negative resynchronisation with phase
error > SJW.

PH2 - SJW Shortening TSEG2 by SJW.

Hard synchronisation SYNC + PROP + PH1 - 1 TSEG1 length is subtracted
by 1 since hard
synchronisation shall restart
Bit with SYNC segment
completed according to
11.3.2.3 of [1].

When Segment counter is equal to, or higher than Expected segment length register - 1, Bit segment meter module

issues End of segment request. End of segment request from Bit segment meter can be caused by:

� Segment counter equals Expected segment length - 1. Such a situation is shown in Figure 4.33.

� Immediate end of segment occurs. See Figure 4.35 (SJW = 3).
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Immediate end of segment is signalled when there is negative resynchronisation during TSEG2 and phase error <= SJW.

Immediate resynchronisation causes Segment end request in the same clock cycle when resynchronisation edge occured.

In this situation, TSEG2 segment ends immediately. This special case covers negative resynchronisation with BRP=1 and

phase error <= SJW. The extra clock cycle needed to update Expected segment length register is undesirable, therefore

immediate end of segment was introduced.

System clock

Bit time segment TSEG1 TSEG2 TSEG1

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

Expected segment length 10 5 10

Segment counter 7 8 9 0 1 2 3 4 0 1 2

Segment end

Figure 4.33: Segment end - regular

System clock

Bit time segment TSEG1 TSEG2

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

Expected segment length 10 12 5

Segment counter 1 2 3 4 5 6 7 8 9 10 11 0 1

Resynchronisation edge

Segment end

Figure 4.34: Positive resynchronisation

System clock

Bit time segment TSEG2 TSEG1

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

Expected segment length 5 10

Segment counter 1 2 3 0 1 2 3 4 5 6 7

Phase Error 4 3 2 0 1 2 3 4 5 6 7

Resynchronisation edge

Segment end

Figure 4.35: Immediate segment end

4.7.4 Segment end detector

File: segment_end_detector.vhd

Segment end detector determines when segment ends based on requests as shown in Table 4.49. Segment end detector

captures these requests and processes them when time quanta has elapsed (tq_edge_nbt/dbt=1). If request arrives

in the same clock cycle as time quanta has elapsed, it is processed immediately and not captured.
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Table 4.49: Segment end causes

Request type Issued by Description
Segment end request (Nominal). Bit segment meter (Nominal) Considered only during

nominal bit rate.
Segment end request (Data). Bit segment meter (Data) Considered only during data

bit rate.
Hard synchronisation Synchronisation checker. Considered only during

nominal bit rate. Shall not
occur during data bit rate.

4.7.5 Bit rate switch

Since both Bit time counters (nominal and data) are running in bits where bit rate is switched (BRS and CRC Delimiter),

length of TSEG2 of these bits is measured by both counters, and both Bit segment meter modules can provide Segment

end request. Segment end detector only considers requests from resynchronisation module of actual bit rate as given by

Protocol control FSM (sp_control signal). Bit rate switch is shown in Figure 4.36 (BRP nominal = 2, BRP data =

1, TSEG1 nominal = 10, TSEG1 data = 7, TSEG2 data = 6). Note that in this Figure Time quanta counter, Time

quanta edge, Segment counter and Expected segment length register are di�erent signals for nominal / data bit rate but

�Nominal� version are shown in nominal bit rate and �Data� versions are shown in data bit rate.

Note that in the moment of bit rate switch, Protocol control FSM provides actualized sp_control (bit rate) already in

Process pipeline stage. Sample control is driven by DFF which is bypassed in this moment so that �rst time quanta of

TSEG2 after bit rate switch is measured with proper bit rate selected!

System clock

Bit time segment TSEG1 TSEG2 TSEG1

Pipeline stage Destuf Process Stuff

Sample control Nominal Data

Time quanta counter 0 1 0 1 0 1 0

Time quanta edge

Expected segment length 10 6 7

Segment counter 7 8 9 0 1 2 3 4 5 0 1

Segment end

Figure 4.36: Bit rate switch

4.7.6 Prescaler FSM

File: bit_time_fsm.vhd

Prescaler FSM determines actual bit time segment (TSEG1, TSEG2). Its state transition diagram is shown in Figure

4.37. Prescaler FSM issues requests to generate TX trigger and RX triggers to Trigger generator. TX trigger is requested

upon the end of TSEG2 segment (start of new bit, bit value is transmitted). RX trigger is requested upon the end of

TSEG1 segment (sample point, bit value is sampled).

4.7.7 Trigger generator

File: trigger_generator.vhd
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Reset

Tseg1

Tseg2

Segment
End

SETTINGS_ENA = ‘0’

SETTINGS_ENA = ‘1’

Segment
End

Figure 4.37: Prescaler FSM

Trigger generator processes requests to generate TX trigger (used to process data in Stu� pipeline stage), and RX triggers

(used to process data in Destu� and Process pipeline stages). Typical scenario is shown in Figure 4.38. As there is no

lower limit on length of TSEG2 from [1], resynchronisation which shortens length of TSEG2 to just one clock cycle can

occur (assuming BRP=1). In such case, RX trigger for Process pipeline stage and TX trigger for Stu� pipeline stage

would overlap. This is not acceptable since Stu� pipeline stage needs Process pipeline stage to be �nished before it

can proceed (new transmitted data must be provided by Protocol control FSM before being �stu�ed�). To avoid this

situation, TX trigger is shifted by one clock cycle as is shown in Figure 4.39. Stu� pipeline stage is also shifted by one

clock cycle (from last clock cycle of TSEG2 to �rst clock cycle of TSEG1). As value of information processing time of

CTU CAN FD is 2, this situation corresponds to shortening length of TSEG2 to less than information processing time.

Shifting of TX trigger corresponds to delaying calculation of following bit value after information processing time from

sample point as de�ned in 11.3.2.4 of [1].

System clock

Bit time segment TSEG1 TSEG2 TSEG1

Pipeline stage DestuffProcess Stuff

Segment end

Sample request

RX Trigger 0

RX Trigger 1

Sync request

TX Trigger

TSEG 1 ends

Sample request

Next pipeline stage

Tseg2 ends

Sync request

a f

b g

c

d

e

h

i

Figure 4.38: TX, RX triggers
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System clock

Bit time segment TSEG1 TSEG2 TSEG1

Pipeline stage DestuffProcess Stuff

Resynchronisation edge

Segment end

Sample request

RX Trigger 0

RX Trigger 1

Sync request

TX Trigger

TSEG 1 ends

Sample request

Next pipeline stage

TX Trigger Shifted

Resynchronistation

Sync Request

a

b

k

l

c

d

e

h

i

Figure 4.39: TX trigger shift

4.7.8 Synchronisation control

Type of synchronisation is controlled by Protocol control FSM based on current part of CAN frame as is shown in Table

4.50.

Table 4.50: Synchronisation control

Synchronisation
type

Used during Protocol control
FSM state

Description

Hard
synchronisation

Suspend transmission, 2nd or
3rd bit of intermission, bus
idle, integration,
reintegration, FDF/res bit
edge in CAN FD Frame.

TSEG1 is started with SYNC segment complement.

No
synchronisation

All other parts Transmitter operating in data bit rate does not synchronise.

No
synchronisation
for phase error >
0

All other parts Node sending dominant bit does not perform
resynchronisation or hard synchronisation as a result of
positive phase error.

Resynchronisation All other parts All other recessive to dominant edges are used for
resynchronisation.

4.7.9 Synchronisation checker

File: synchronisation_checker.vhd

Synchronisation checker determines if synchronisation edge (detected by Bus sampling, see 4.8) is valid for synchroni-

sation accroding to 11.3.2.1 [1]. Synchronisation checker maintains Synchronisation edge �ag. This �ag is set when

synchronisation edge occurs, and cleared when TSEG1 ends (sample point of bit). If this �ag is set, and another synchro-

nisation edge occurs before the �ag is cleared, such edge is ignored. Therefore, if there is more than one synchronisation

edge between two consecutive sample points, only �rst edge is detected as valid edge and other edges are ignored. A

situation where two synchronisation edges are detected (and second one is �ltered out) is shown in Figure 4.40. When

synchronisation edge is valid for synchronisation, it causes resynchronisation, hard synchronisation or no synchronisation

according to rules in Table 4.50.
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Sample Point                                                                                       Sample Point         

System clock

Bit time segment TSEG1 TSEG2 TSEG1 TSEG2

Synchronisation edge

Valid Synchronisation edge

Segment end

Valid Ignored Ignored Valid

a i

c e g k

d f h l

b j

Figure 4.40: Synchronisation edge �ltration
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4.8 Bus sampling

File: bus_sampling.vhd

Bus sampling module implements following functionality:

� Synchronizes can_rx input to System clock domain.

� Samples bus in sample point (Destu� pipeline stage).

� Detects edges on sampled can_rx and can_tx. Detect synchronisation edges.

� Measures transmitter delay and calculate secondary sample point o�set.

� Creates secondary sample point (SSP).

� Detects bit error.

Block diagram of Bus sampling is shown in Figure 4.41.

bus_sampling

sig_sync
(synchroniser)

CAN RX

bit_error_detector

sample_mux

data_edge_detector

trv_delay_meas

tx_data_cache

RX Data

RX Data

Transceiver Delay

TX Trigger

Secondary Sampling Point Offset

TX Data

Secondary Sampling Trigger

CAN TX

Delayed
TX Data

Bit error

Previous Sample

Measurement
Control

Synchronisation
Edge

Sample control

ssp_generator

Figure 4.41: Bus sampling block diagram

Bus sampling implements 2 DFF synchronizer to synchronize asynchronous can_rx input. Output of this synchronizer

is sampled in sample point, and stored to Previous bus value register. Output of this synchronizer is also connected as

data input to Bit destu�ng module, therefore bus is sampled in the same moment as input serial data from CAN bus

are processed by Bit destu�ng. This synchronizer is clocked with System clock, and it is always enabled.

Bus sampling detects edges on can_rx and can_tx. Edges on can_tx are detected with granularity of System clock

period. Edges on can_rx are detected with granularity of time quanta (Edges are gated by Time quanta edge provided

by Prescaler). Only recessive to dominant edges are detected on can_rx. Furthermore, edge on can_rx is detected only

when bus value (synchronizer output) has opposite value than bus value sampled in previous sample point (Therefore
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previous sampled bus value must be recessive). Detected edge on can_rx is propagated as synchronization edge to

Prescaler. Edge on can_tx is detected regardless of previous sampled bus value, but only recessive to dominant edges

are detected. A typical scenario of edge detection on can_tx/can_rx is shown in Figure 4.42 (with BRP=2).

System clock

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

CAN TX

CAN RX

RX (Synchronization) edges

TX edges

Detected immediately Detected at Time Quanta Detected immediately Detedted at Time Quanta

e h

a f

c i

d j

b g

Figure 4.42: Edge detection

4.8.1 Transmitter delay measurement

File: trv_delay_meas.vhd

Transmitter delay is a roundtrip delay from can_tx to can_rx upon transmission of dominant bit. This delay includes

propagation of signal to physical layer transceiver, delay of transceiver and propagation of signal back. Transmitter

delay is measured in CAN FD frames between falling edge of FDF (EDL) bit, and following r0 bit. In CAN 2.0 frames,

Transmitter delay is not measured. Transmitter delay is measured in multiples of System clock (not time quanta) and its

measurement is controlled by Protocol control FSM. Measurement is described in Table 4.51 and shown in Figure 4.43.

Measured transmitter delay can be read out from TRV_DELAY register via SW. Transmitter delay readable from

TRV_DELAY register is shadowed, and the shadowed value is changed upon the end of transmitter delay measure-

ment. Therefore if SW reads TRV_DELAY during measurement, it will read previous measured value. New value will

be read only after the end of current measurement. To read proper value of transmitter delay from TRV_DELAY, at

least one CAN FD frame must have been transmitted since previous reset, otherwise 0 will be read from TRV_DELAY

register.

Table 4.51: Transmitter delay measurement

Step Action
1 Transmitter of CAN FD frame reaches sample point of FDF (EDL) bit. It enables measurement of

transmitter delay.
2 At start of next bit (Stu� pipeline stage, r0 bit), Protocol control transmits dominant bit.
3 An edge on can_tx is detected by Bus sampling. Transmitter delay counter is erased.
4 Transmitter delay counter is incremented by 1 each clock cycle.
5 The dominant value which was transmitted in Step 2, propagates to physical layer transceiver and back to

can_tx input of CTU CAN FD.
6 can_rx input is synchronized by 2 DFF synchronizer to System clock domain. Delay of synchronizer is

included in measured transmitter delay.
7 Bus sampling detects edge on can_rx. Measurement is �nished, new value can bea read from

TRV_DELAY register.
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System clock

Protocol control FSM EDL r0

Pipeline Stage DestuffProcess Stuff

Measurement enable

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

CAN TX

CAN RX

RX edge

TX edges

Transceiver delay counter 0 1 2 3 4 5 6 7

Shadowed Transceiver Delay Previous Transceiver Delay 7

Measurement Start Measurement End

a c

b d

Figure 4.43: Transmitter delay measurement

4.8.2 Secondary sampling point o�set

Secondary sampling point o�set is calculated as o�set from start of bit (SyncSeg �eld) in multiples of System clock.

Secondary sampling point o�set can be con�gured by SW from SSP_CFG register according to Table 4.52. Secondary

sampling point o�set can have values between 0 and 127. If secondary sampling point o�set is 0, secondary sampling

point is active in the same clock cycle as TX trigger. If secondary sampling point o�set is higher than 127 (e.g. measured

transmitter delay + o�set > 127), it is saturated to 127.

Table 4.52: Secondary sampling point con�guration

Con�guraton name Description
O�set Position of secondary sampling point is �xed at SSP_CFG[SSP_OFFSET]. Measured

transmitter delay is not taken into account.
O�set + transmitter
delay

Position of secondary sampling point is given as SSP_CFG[SSP_OFFSET] +
Measured transmitter delay.

No SSP Bit rate within Prescaler is never changed to �Secondary�, it only changes to �Data�
even for transmitter of CAN FD frame, and bus is sampled at moment of data bit rate
sample point.

4.8.3 Secondary sampling point generator

File: ssp_generator.vhd

Secondary sampling point (SSP) is created by delaying TX trigger by the amount of SSP o�set as is shown in Figure

4.44. When bit rate is switched from Nominal to Data, �rst SSP is delayed from TX trigger by the amount of SSP o�set.

As SSP is used to detect bit errors by Transmitters of CAN FD frames during data bit rate, each next SSP is located

whole data bit time later from previous SSP (there is no resynchronisation by Transmitters in data bit rate, so bit time is

not shortened, nor lengthened). The position of �rst three SSPs is shown in Figure 4.45. The relationship between �rst

SSPs and next SSPs is used by SSP generator module which creates SSP, and provides it to Bit error detector. Operation

of SSP generator is described in Table 4.53.
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System clock

Bit time segment TSEG1 TSEG2 TSEG1

TX Trigger

Secondary Sampling Point

Secondary Sampling Point Offset

a c

b d

Figure 4.44: Secondary sampling point

Time

Bit-rate Nominal

CAN frame

Sample
point

BRS

SSP 1 SSP 2

ESI DLC[3]

SSP
Offset

Data Bit
Time length

SSP 3

DLC[2]

Data Bit
Time length

Data

Start of
bit

Figure 4.45: Secondary sampling point positions

Table 4.53: SSP generator operation

Step Action
1 CTU CAN FD is transmitter of CAN FD frame where bit rate will be switched.
2 Protocol control switched bit rate in sample point of BRS bit. Protocol control con�gures SSP generator

to measure length of data bit time and to create �rst SSP.
3 SSP generator waits for �rst TX trigger in data bit rate and starts measurement of data bit time length

when TX trigger is active (by means of so called SSP counter (SSPC)). SSP generator starts measuring
delay of SSP o�set from TX trigger (by means of so called Bit time measurement counter (BTMC)).

4 When next TX trigger occurs (at start of next bit), SSP generator stops measurement of data bit time in
SSPC. Now SSP generator knows distance between each next SSP (SSPC value).

5 When BTMC reaches value of SSP o�set, SSP generator creates �rst SSP.
6 SSPC is restarted, and position of next sample point starts to be calculated by SSPC. Now the delay of

each next SSP is given by data bit time length (value of BTMC).
7 Step 5 is repeated for each SSP until the end of data phase of CAN FD frame. Note that SSPC can reach

value of SSP o�set for �rst SSP sooner than BTMC measurement will �nish (This position occurs when
SSP position is located within the same bit time). This does not mind, since value of BTMC will always
be higher than SSPC, therefore SSPC can count when BTMC is still running.

4.8.4 Bit error detection

File: bit_err_detector.vhd

Bit error detection di�ers for nominal bit rate, data bit rate and Secondary sampling as is shown in Table 4.54. Note

that bit error is detected by Bus sampling always when CTU CAN FD is enabled (SETTINGS[ENA] = 1). Bit error is
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Table 4.54: Bit Error detectiron

Bit-Rate Detected when Description
Nominal bit rate RX trigger 1 is

active
Detected when can_tx value (transmitted value of actual bit) is not
equal tocan_rx value (sampled bus value).

Data bit rate RX trigger 1 is
active

Detected when can_tx value (transmitted value of actual bit) is not
equal to can_rx value (sampled bus value).

Secondary sample Secondary sample
point

Detected when can_tx value on the output of TX data cache is not
equal to can_rx value (sampled bus value).

only ignored by Error detector module when it is irrelevant as shown in Table 4.16. Bit error detection in nominal bit

rate is shown in Figure 4.46.

System clock

Bit time segment TSEG2 TSEG1 TSEG2 TSEG1 TSEG2

TX Trigger

RX Trigger 0

RX Trigger 1

CAN TX

CAN RX

Bit Error

Transceiver Delay CAN TX=CAN RX, No Bit Error CAN TX /= CAN RX, Bit Error

c g

a d h

b e i

f j

Figure 4.46: Bit error detection

4.8.5 TX data cache

File: tx_data_cache.vhd

To detect bit error in Secondary sampling, CTU CAN FD needs to remember can_tx values of several bits transmitted on
CAN bus (secondary sample point can be so late, that it does not �t within the bit itself, and may occurs in following bits,

therefore, a transmitted bit value must be rememebered until secondary sample point). This functionality is implemented

by TX data cache. TX data cache is a FIFO memory with each entry containing a single bit. can_tx value is stored to

TX data cache directly after a bit was transmitted to the bus (SYNC segment, One clock cycle after Stu� pipeline stage).

TX data cache can store up to 8 bit values (therefore allowing 8 bits on the �y). A value is read from TX data cache

when secondary sampling point is active. TX data cache operation together with bit error detection during Secondary

Sampling is shown in Figure 4.47.

System clock

Bit time segment TSEG2 TSEG1 TSEG2 TSEG1 TSEG2 TSEG1 TSEG2 TSEG1

TX Trigger

Secondary Sample Point

CAN TX

CAN RX

TX Data cache entries 1 2 1 2 1 2 1 2 1

TX Data cache output

Bit Error

Transceiver Delay

Secondary Sample Point Offset

TX Data cache output = CAN RX, No Bit Error TX Data cache output = CAN RX, No Bit Error TX Data cache output != CAN RX, Bit Error

Push to TX Data cache

Pop from TX Data cache

c q

d h s l

a

b e i m

r t

f j n

g k o

Figure 4.47: TX data cache operation
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4.9 Memory registers

File: memory_registers.vhd

Memory registers implement following functionality:

� Contains con�guration and status registers of CTU CAN FD (accessed by SW).

� Issues commands to CTU CAN FD by SW.

� Reads received CAN frame from RX bu�er RAM.

� Writes CAN frame to be transmitted to TXT bu�er RAMs.

Block diagram of Memory registers is shown in Figure 4.48.

memory_registers

Output
record

Output
record

test_registers

address_decoder memory_reg

Input
record

read_multiplexor

Register
Select Output

record

control_registers

address_decoder memory_reg

Input
record

read_multiplexor

Register
Select Output

record

Memory
Bus

Figure 4.48: Memory registers block diagram

Memory registers contain Control registers and Test registers modules which are generated by [7]. Control registers, Test

Registers and format of CAN frame as is stored in TXT bu�ers and RX bu�er are described in IP-XACT format with
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slight modi�cations as explained in 4.55. Memory map is edited via Kactus2 tool. Test registers module is present only

when sup_test_regsiters=true.

From one side, Control registers and Test Registers modules are accessed via simple RAM-like memory interface which is

described in 2.1.1. From other side, Control registers and Test Registers modules are accessible via two records: Output

record (signals going from registers modules to rest of CTU CAN FD) and Input record (signals going from rest of CTU

CAN FD to registers modules).

Memory registers block decodes write accesses to TXT bu�ers (via TXT bu�er 1 to TXT bu�er 8 memory locations)

and maps these accesses to access TXT bu�er RAMs.

4.9.1 Register types

Control registers module contains following types of registers:

Read/Write register

A DFF is instantiated and connected to output record (write value). When register is read, value in this DFF is returned.

Read only register

No DFF is instantiated. When register is read, value from Input record is returned.

Write only register

A DFF is instantiated and connected to output record (write value). When register is read, all zeroes are returned.

Read/Write Once register

A DFF is instantiated and connected to output record (write value). When register is read, value from Input record is

used. This type of register is used when write value has di�erent meaning than read value.
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4. SUB-BLOCKS ARCHITECTURE

4.9.2 Register attributes

Registers within Control registers module use additional IP-XACT attributes as is shown in Table 4.55.

Table 4.55: IP-XACT register attributes

IP XACT
attribute

Attribute
value

Applied on Used on registers Description

Modi�ed
write value

clear Register
�eld

COMMAND,
MODE[RST],
INT_STAT,
INT_ENA_CLR,
INT_ENA_SET,
INT_MASK_CLR,
INT_MASK_SET,
TX_COMMAND,
CTR_PRES

No DFF is instantiated in the register, but
written value is only combinatorially decoded
and connected to Output record.

Is present IP_XACT
parameter
name

Register FILTER_*_MASK,
FILTER_*_VAL

Register is instantiated only when VHDL
generic with the same name as IP-XACT
parameter is set to �true�. When generic is
�false�, register is not instantiated and its reset
value is returned upon read (if it is readable).
Value of this generic is added to generics of
Control registers module.

Read action modify Register
�eld

RX_DATA Read signaller module is instantiated. This
module combinatorially decodes when register
�eld is being read and provides this information
in Output record. Used to signal to RX bu�er
that there is a read from RX_DATA register.

Vendor
extension -
regLocks/
regLock

name=
register
name

Register EWL/ ERP/
CTR_PRES

If speci�ed, register is writable only when lock
= 0. If not speci�ed, lock input has no e�ect.
This is used to prevent user from writing
EWL/ERP/CTR_PRES unless CTU CAN FD
is in test mode.
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