CTU CAN FD
IP CORE

System Architecture

LOGIC DESIGN SERVICES l.t.d.

February 1, 2026

/ﬁ%?) CTU CAN FD IP Core - System Architecture
L2

Version 0.21, Commit:5d16182, 2026-02-01

Document Corresponding Date Change description
version Datasheet version
(release)
0.1 2.2 26-09-2019 Initial version - separated stand-alone architecture
document from Datasheet document.
0.2 2.2 29-09-2019 TX Arbitrator loads identifier as part of TXT buffer
validation.
0.3 2.2 07-10-2019 Update interfaces
0.4 2.2 21-10-2019 Clarify TXT buffer will go to TX Failed in Bus-off.
0.5 2.2 07-11-2019 Replace SSP shift register by SSP generator.
0.6 2.2 13-12-2019 Add “Error delimiter too long” state to Protocol control
FSM. Clear non-actual TODOs.
0.7 2.2 30-04-2020 Add note about implementation types. Remove form error
on EDL/RO. Update Protocol control FSM to handle
protocol exception.
0.8 2.2.4 18-05-2020 Correct Expected segment lenght preload values for
negative resynchronisation.
0.9 2.25 6-10-2020 Update Protocol control FSM diagram.
0.10 2.3.0 6-02-2021 Add notes on clock gating.
0.11 233 26-04-2021 Add description of memory testability.
0.12 234 10-05-2021 Keep NBTM counter enabled always even in data bit rate.
Fixes bug with improper PH2 lenght if error is detected
during data bit rate with BRP=1
0.13 2.3.5 and higher 16-05-2021 Add res n_out synchronized reset output.
0.14 2.4 and higher 22-12-2021 | Clarify implications of connecting core to 8/16/32 bit buses.
0.15 241 10-4-2022 Add Parity Check use-case in TXT buffer. Add sup _parity
generic.
0.16 2.4.2 27-6-2022 Add reset buffer rams and active timestamp bits
generic. Remove interfaces of each sub-block.
0.17 243 18-2-2023 Remove drv_ bus and stat_bus.
0.18 2.5 9-12-2023 Move to new release of CTU CAN FD. Bump document
version accordingly.
0.19 2.6 29-03-2025 Replace GHDL with NVC
0.20 2.6 15-6-2025 Clean-up. Add missing RX buffer FSM states.
0.21 2.7 4-1-2026 Move to new release of CTU CAN FD

Contents

Format

1 General Information

1.1 Introduction
1.2 Development tools
1.3 Design automation L e e

1.3.1 Register map generation

1.3.2 Xilinx Vivado component L e
1.4 General coding guidlines
1.5 Source code access
1.6 1S011898-1 2015 compliance L

2 Interfaces

2.1 Memory Bus
2.1.1 RAM-like interface L
2.1.2 APB . .
2.1.3 AHB . . e
2.1.4 Limitations on 8/16 bit buses

22 CANBUS

2.3 Timestamp

24 Clock and reset

25 Test probe

2.6 Scanenable

2.7 Configuration options L

3 System architecture

3.1 Blockdiagram
3.2 Reset architecture
3.3 Clock architecture e
3.4 Testability

341 Memory testability

10
11
11
12
12
12
12
13

2 CTU CAN FD IP Core - System Architecture CONTENTS
/tf Version 0.21, Commit:5d16182, 2026-02-01
3.5 Sequential logic L 16
3.6 Resynchronisers e 17
3.7 Memories 17
3.8 Pipeline architecture and triggers 18
3.9 CAN Frame metadata 20
3.10 CAN Frame format 20
311 Test mode L 21
3.12 Integration vs. Reintegration L 22
Sub-blocks architecture 23
41 CAN Core e 23
4.1.1 Protocol control L L 25
Protocol control FSM 26
Control counter 28
Retransmitt counter L 29
Error detector L 37
412 Operation control 40
413 Fault confinement 42
414 Bitstuffing 43
415 Bitdestuffing 46
41.6 CAN CRC . . . s 47
4.1.7 Trigger multiplexor 50
418 Bustrafficcounters L 51
42 RXbuffer . . . e 51
421 Storing protocol 53
422 Overrunflags 56
4.2.3 Received frame timestamp e 56
424 RXbuffer Parity e 56
425 Reading protocol 56
426 RXbuffer RAM 58
43 Frame Filters. e 59
4.4 TXT buffer . . . o o e 60
441 TXT buffer commands 61
442 TXT buffer RAM 62
4,43 TXT buffer - Transmission availability 62
444 TXT buffer Parity e 63
445 TXT buffer - Use cases 63
45 TXarbitrator 66
451 TXT buffer validation process 67

iii

i

a3
S

4.6
4.7

4.8

4.9

CTU CAN FD IP Core - System Architecture CONTENTS
Version 0.21, Commit:5d16182, 2026-02-01

452 Priority decoder L 71
453 TXT buffer change between transmissions 73
454 TX Arbitrator corner-cases 73
455 TXT buffer addressing 74
456 TXT buffer RAM access e 74
457 TX frame timestamp comparison 74
458 Lock and Unlock commands 75
459 Metadata double-buffering 75
4510 TX datapath hazard protection 76
4511 TX Abort + Retransmitt clear 76
Interrupt Manager L 77
Prescaler e 78
47.1 Bitrate configuration 79
472 Bittimecounters L 79
473 Bitsegment meter. 79
474 Segmentenddetector 81
475 Bitrateswitch. 82
476 Prescaler FSM 82
4.7.7 Trigger generator 82
4.7.8 Synchronisation control 84
4.7.9 Synchronisation checker 84
Bus sampling 86
481 Transmitter delay measurement L 87
4.8.2 Secondary sampling pointoffset 88
4.8.3 Secondary sampling point generator L 88
484 Biterrordetection 89
485 TXdatacache. 90
Memory registers L e 91
4.9.1 Register types e 92
Read/Write register 92

Read only register 92

Write only register L 92
Read/Write Once register 92

4.9.2 Register attributes 93

iv

Format

Throughout this document following notations are kept:

e Common text is written with this font.

e Memory registers are always described with capital letters e.g. REGISTER or REGISTER [BIT _FIELD] to represent
register or bit field within a register.

e Signal names and generic names are written by bold lower-case cursive (e.g. can_ rx)

e Explicit terms from 1S011898-1 2015 are marked via red color (e.g. SOF bit). Definition of these terms can be
found in [1].

e Open issues and TODOs are written in blue font like so TODO: not yet implemented.

st:(;gg CTU CAN FD IP Core - System Architecture 1. GENERAL INFORMATION
/tf Version 0.21, Commit:5d16182, 2026-02-01

1. General Information

1.1 Introduction

This document describes architecture of CTU CAN FD IP Core. It describes external interfaces of the core as well
as internal architecture. This document does not provide functional description of the core, reffer to CTU CAN FD
Datasheet ([2]) for such information. This document alogn with CTU CAN FD Datasheet ([2]) serves as reference on
how shall CTU CAN FD function, and it is supposed to be used as verification reference on how shall the device behave.

1.2 Development tools

To develop CTU CAN FD following tools are used:

e NVC for digital simulations.

e Quartus Prime and Xilinx Vivado for Synthesis to Intel and Xilinx FPGAs, Timing analysis and design size bench-
marks.

e VUnit for simulation wrappers.

e Kactus?2 for definition of register map in IP-XACT format.

o LyX to write documentation.

e GitLab of CTU FEE and Github to host source code GIT repository.
e Wavedrom for Timing Diagrams.

e Python for scripting.

1.3 Design automation

Part of CTU CAN FD Core is auto-generated. Register map is implemented in Kactus 2 in IP-XACT format (“spec/
CTU/ip/CAN_FD_IP_Core/2.1/CAN_FD _IP_Core.2.1.xml"). The design in IP-XACT format is unified specification
of user-interface. Following resources are generated from IP-XACT specification:

e VHDL packages with address, bit-fields and reset values definitions
(“src/lib/can_fd_frame format.vhd”, “src/lib/can_fd register map.vhd").

2 CTU CAN FD IP Core - System Architecture 1. GENERAL INFORMATION
/tf Version 0.21, Commit:5d16182, 2026-02-01

e C header file with address map definitions and register descriptions
(“driver/ctu_can_fd_regs.h”, “driver/ctu_can fd frame.h”).

e Lyx documentation of register map. Reffer to [2].
e RTL Code of Control Registers module (“src/memory _registers/generated/*).
e Documentation of RTL module interfaces (‘doc/core/entity docs”).

To generate these design materials CTU CAN FD IP Core uses IP-XACT register map generator which is accessible at
regmap _gen. Register map generator is linked as sub-module of CTU CAN FD repository. Clone all the submodules
recursively before using register map generator. All of the generated files are considered as don't touch. Part of this
document is also auto-generated. Each section which describes list of Generics and Signals of a module is generated from
VHDL RTL code.

1.3.1 Register map generation
When CTU CAN FD GIT repository is clonned, register map can be generated by following script:

cd scripts
./update_reg_map

1.3.2 Xilinx Vivado component

CTU CAN FD contains Xilinx Vivado component (“src/component.xml”) for integration of CTU CAN FD to Xilinx based
FPGAs. Xilinx Vivado component is generated by following script:

cd scripts
python gen_vivado_component.py

1.4 General coding guidlines

RTL code within CTU CAN FD has following coding rules:

e Underscore is always used to separate words within signal/entity/process/variable/port/generic names (e.g. tx_hw_cmd,
can_ core).

e Constants are written by capital letters with “C_" prefix (e.g. C_SUSPEND_DURATION).

e Generics are written by capital letters with “G_" prefix (e.g. G_RX_BUFF_SIZE). This rule has an exception on
top level interface and wrappers of CTU CAN FD (can_top_level, can_top _ahb).

e Signals are always commented on line before the signal. This must be especially true for port signals. This allows
to extract documentation of VHDL entities from RTL code.

e Sections of signals can be defined by surrounding section name by whole line of “-" characters.
e All RTL codes are indented with 4 spaces.
e Line length shall be limited to 80 characters.

e Instance names are suffixed with “_inst”, process names are suffixed with “ proc”, cover point names are suffixed
with “ cov’, assertion names are suffixed with “ asrt”. DFF names can be suffixed by * d/ q" depending on
whether it is DFF input/output.

https://github.com/Blebowski/Reg_Map_Gen

st:(gg CTU CAN FD IP Core - System Architecture 1. GENERAL INFORMATION
/tf Version 0.21, Commit:5d16182, 2026-02-01

1.5 Source code access

CTU CAN FD IP Core source code is available in CTU FEE GitLab repository at:
https://gitlab.fel.cvut.cz/canbus/ctucanfd _ip core

1.6 1S011898-1 2015 compliance

CTU CAN FD is compliant with [1]. With regards to this document, CTU CAN FD supports all implementation options
(Classical CAN, CAN FD Tolerant, CAN FD enabled). Compliance to each of these options can be configured via a
register (run-time configurable). Reffer to [2] for description of CTU CAN FD configuration.

Support of optional features from [1] is described in Table 1.1 and Table 1.2.

https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

2 CTU CAN FD IP Core - System Architecture 1. GENERAL INFORMATION
/tf Version 0.21, Commit:5d16182, 2026-02-01

Table 1.1: 1SO11989-1 optional features (1)

Feature Name Status Notes

FD Frame format | Supported

Disabling of frame Supported Reception of CAN FD frames can be disabled by setting MODE[FDE] = "0’

formats
Limited LLC Not Only full size (64 byte) frames are supported.
frames
Supported
No transmission of
frames including Not No padding is inserted since full sized frames are supported.
padding bytes Supported
LLC Abort . L C
Interface Supported Issuing Set abort command to TXT buffer which is used for transmission is
equal to issuing LData.Abort Request / LRemote.Abort Request primitive.
Ejluz:d BRS Supported BRS value can be specified for each transmitted CAN frame. ESI value can’t

be specified for transmitted CAN frames, it is always derived from current
Fault confinement state of CTU CAN FD. ESI value can be read for each
received frame.

Method to provide
MAC data Partially CTU CAN FD implements TXT buffer RAMs which stores whole CAN frame
consistency Supported for transmission before the transmission is started. This corresponds to: “The
MAC sub-layer shall store the whole message to be transmitted in a
temporary buffer that is filled before the transmission is started.” Additionally,
CTU CAN FD implements parity protection on each word of TXT buffer and
RX buffer if sup parity=true.

Time and time

. . Partially Time triggerred transmission is available in TX Arbitrator module. CTU CAN
triggering

Supported FD does not support time base by itself, it is left up to integrator to provide
Time base via timestamp input. The reason for this, is to share single Time
base between multiple instances of CTU CAN FD. timestamp input is
readable from CTU CAN FD. No event generation is provided from
timestamp input.

Time stamping Supported Timestamping of RX frames is supported in SOF or EOF bit. Time Base
counter must be provided by integrator and must be connected to
timestamp input.

Bus Monitoring Supported Supported via MODE[LOM].

mode

Handle Supported Handle corresponds to TXT buffer.
Restrlc.ted Supported Supported via MODE[ROMI.
operation

Separate

prescalers for
Nominal and Data
Bit Rate

Supported Prescalers are separate in BTR[BRP] and BTR_FD[BRP _FD] registers.

2 CTU CAN FD IP Core - System Architecture 1. GENERAL INFORMATION
/tf Version 0.21, Commit:5d16182, 2026-02-01

Table 1.2: 1SO11989-1 optional features (1)

Feature Name Status Notes

Disabling of

automatic Supported Supported via SETTINGS[RTRLE] and
retransmission SETTINGS[RTRTH] registers.

Maximum number

.. Supported
of retransmissions PP

Disabling of
protocol exception
event on res bit
detected recessive

Supported Protocol exception is configurable via SETTINGS[PEX] register.

PCS_Status Supported CTU CAN FD supports both nominal and data bit rate.
Edge filtering
during the bus Not

integration state Supported

Time resolution

Not Secondary sample point position is always given in minimum time quanta
for SSP placement y sampie point p ys g q

Supported regardless of bit rate prescaler seettings.

FD_T/R message | Supported

2 CTU CAN FD IP Core - System Architecture 2. INTERFACES
/tf Version 0.21, Commit:5d16182, 2026-02-01

2. Interfaces

2.1 Memory Bus

CTU CAN FD is a slave device accessible via one of three memory buses:

o RAM-like interface
e APB
e AHB

Each interface can be used via dedicated wrapper. SW shall not access CTU CAN FD sooner than two clock cycles
after external reset was released (due to reset synchronisation) (see Table 3.1). If CTU CAN FD is accessed earlier,
writes accesses have no effect and read accesses return zeroes. If external reset is executed via SW driver (e.g. at driver
load time), it is recomended to add corresponding delay before driver executes any access to the device (e.g. via usleep,
nanosleep, dummy NOPs, or similar mechanism).

2.1.1 RAM-like interface

Wrapper can_top_level.vhd

RAM-like interface is the default interface of CTU CAN FD with signals shown in Table 2.1. A typical read/write tran-
scations on RAM-like interface are shown in Figure 2.1. Note that RAM-like interface does not contain any Ready/ACK
signal. CTU CAN FD is always able to process written data in one clock cycle (write access) and return read data in the
next clock cycle (read access). Accesses on RAM-like interface shall be 4 byte aligned (lower 2 bits of address shall be
equal to 0). If access is not 4 byte aligned, lower 2 bits of address are ignored. Therefore, single access spaning more
than 1 32 bit memory word is not possible. Each byte is separately writable and readable via byte enable (sbe), therefore
8-bit and 16-bit accesses are supported. If sbe signal is zero, data on corresponding byte are not written during write
access, and zeroes are returned during read access. CTU CAN FD is little endian oriented (LSB = Lowest Adress ->
sbe(0) = Byte 0 = data_in/out (7:0); sbe (3) = Byte 3 = data_in/out(31:24)).

RAM-like interface supports burst read from RX buffer (see 4.2). In such case, address input must be equal to RX DATA
register address during whole read operation (“‘stationary”/"frozen” burst). During such read, each word must be read by
32-bit access (she="1111"). This means that read from RX buffer is always executed by 32-bit word regardless of sbe
value. Such a situation is shown in Figure 2.2.

(‘L%é CTU CAN FD IP Core - System Architecture 2. INTERFACES
/rf Version 0.21, Commit:5d16182, 2026-02-01

Table 2.1: RAM-like interface

Signal Name Direction Width Description

data_in in 32 Write Data

address in 16 Address

scs in 1 Chip Select

srd in 1 Read indication

swr in 1 Write indication

sbe in 4 Byte enable (applicable for both reads and writes)
data out out 32 Read data

ranipinininiginiginiginiginiginiginininl
srd [\ [\ [\
sbe 77////XBE 0BE 1YBE 2}/ 7/ XBE 0)BE 1{BE 2/ 7 XBE 1\BE 2{/ ~XBE 1)BE 2/
address 7//////{0000)0004)0008) ~//X0000)0004)0008)” ~/X0004)0008) 7/X0004)0008)"
data_in %Data OXData 4XData 8% %Data 4% %Data SV
data_out %Data OXData 4XData sX7/ %Data sX7/ %Data 4)(7/

Write access Read access Read after Write Write after Read

Figure 2.1: RAM-like interface

oksys [[| L L LI LI LI LI LI LI 1
scs / \
swr
srd / \
Y7/ SR AR S G D D T s

address m(RX_DATA X RX_DATA X RX_DATA X RX_DATA X RX_DATA X RX_DATA X RX_DATA X RX_DATA W

data_out 7/7/////////////////f pataWord 1 | pataWord2) DataWord3) Data Word 4) Data Word 5) Data Word 6) Data Word 7 Data Word 8 X/

Figure 2.2: RX buffer burst read

RAM-like interface is Avalon compatible (according to [3]) and mapping of RAM like signals to Avalon Memory-mapped
slave signals is shown in Table 2.2. When connected to Avalon MM master, write access to reserved address has no
effect and read access returns all zeroes instead of responding with DECODEERROR response. response signal shall be
connected to "00", writeresponsevalid and readdatavalid shall be connected to '1'.

2.1.2 APB
Wrapper can_top _apb.vhd

APB Wrapper is compatible with [4]. Signals of CTU CAN FD on APB interface are shown in Table 2.3. Every access
on APB Interface lasts two clock cycles, APB does not support bursts. CTU CAN FD never stalls on APB interface via

8

sn%g CTU CAN FD IP Core - System Architecture 2. INTERFACES
/i:f Version 0.21, Commit:5d16182, 2026-02-01

Table 2.2: RAM-like to Avalon mapping

RAM-like signal Avalon signal Description

name name

data_in write data Data written to Avalon MM slave.

address address Address for read/write of Avalon MM slave.

scs - Shall correspond to chip select of slave if more than 1 slave is connected
to given bus. If single slave is connected, shall be connected to 1.

srd read Read indication

swr write Write indication

sbe byteenable Byte enable, used for both read and write transfers.

data out readdata Data read from Avalon MM slave.

s_apb_pready, it keeps s _apb_pready always high. CTU CAN FD does not return error via s _apb_ pslverr on
any access. If SW executes access to an invalid location within CTU CAN FD, it is simply ignored. This allows dumping
whole CTU CAN FD memory space without memory access errors. Accesses on APB Interface shall be 4 byte aligned. If
access is not 4 byte aligned, lowest 2 bits of address are ignored. 8/16 bit write accesses are supported via write strobe
signal (s_apb_ pstrb). Basic accesses on APB are shown in Figure 2.3.

Table 2.3: APB interface

Signal Name Direction Width Description

s_apb paddr in 32 Address

s_apb _penable in 1 Enable. Indicates second cycle of access.

s_apb_prot in 3 Protection type. Ignored by CTU CAN FD. All access types
are treated equally by CTU CAN FD.

s_apb _prdata out 32 Read data.

s _apb pready out 1 Ready. Always asserted.

s_apb_psel in 1 Slave select.

s _apb _pslverr out 1 Access error. CTU CAN FD always drives this pin low.

s apb pstrb in 4 Write Strobe. During write access, logic 1 indicates according

- byte will be written. Ignored during read access.

s _apb pwdata in 32 Write data.

s _apb pwrite in 1 Access direction.

S'Lag CTU CAN FD IP Core - System Architecture 2. INTERFACES
/tf Version 0.21, Commit:5d16182, 2026-02-01

penable T\ o Y e W
psto 7770001 X o011 X 1111 X77X 0000 X
paddr 777X 0000 X 0004 X 0008 ¥/ /X 0000 X 0004 X 0008 ¥
pwdata 7/ vatao)fvataa)/ \atasX
prdata %Data OW/A(Data 4)% %Data BW

8/16/32 bit Write access Read accesses

Figure 2.3: APB Interface access

2.1.3 AHB

Wrapper CAN top ahb.vhd

AHB Wrapper is compatible with [8]. Signals of CTU CAN FD on AHB interface are shown in Table 2.4. CTU CAN
FD accepts all transfer types (Non-sequential, Sequential, Idle, Busy) on AHB bus. CTU CAN FD treats burst accesses
equally as regular accesses (no internal caching is done). If read transfer occurs after write transfer (directly one after
another), CTU CAN FD inserts one wait cycle into AHB transaction, as is shown in Figure 2.4. CTU CAN FD does not
return error via hresp on any accesses. If SW executes access to an invalid location within CTU CAN FD, it is simply
ignored. This allows dumping whole CTU CAN FD memory space without memory access errors. CTU CAN FD does
not support unaligned accesses on AHB Bus. Each access shall be aligned to its own size (8-bit access can have arbitrary
address, 16 bit access must have address 2-byte aligned, 32-bit access must have address 4-byte aligned). No locked
sequences (hmastlock) are supported by CTU CAN FD.

Table 2.4: AHB interface

Signal Name Direction Width Description

haddr in 32 Address

hwdata in 32 Write Data

hsel in 1 Write select

hwrite in 1 Access direction

hsize in 3 Access size. (8/16/32 bit access sizes are supported).
hburst in 3 Burst indication, ignored by CTU CAN FD.
hprot in 3 Protection type, ignored by CTU CAN FD.
htrans in 2 Transaction type.

hmastlock in 1 Locked sequence indication.

hready in 1 Ready indication.

hreadyout out 1 Ready indication output.

hresp out 1 Response type.

hrdata out 32 Read data.

10

ﬁt.ag CTU CAN FD IP Core - System Architecture 2. INTERFACES
/i:f Version 0.21, Commit:5d16182, 2026-02-01

hwite [\ [\
hready /
hsize 77774000 X 001 X 010 X/ 74010010 X7 77X 000 Y 001 X010 X/
haddr 77/////§0001)0002)0004)”/ 7/X0000f_ 0004 X ~//X0001)0002)0004)7
hwdata 7/ \pata 1)pata 2fpata4)/////////X__patao X
hrdata %Data 4W %Data 1XData 2XData 4%

8/16/32 bit Write access Read after Write 8/16/32 bit Read accesses

Figure 2.4: AHB Interface access

2.1.4 Limitations on 8/16 bit buses

CTU CAN FD is 32-bit peripheral, however, it is possible to integrate it to systems with 8/16 bit bus thanks to "byte
enable” capabilities of each bus interface wrapper. If SW accesses CTU CAN FD via 8/16 bit bus, access to simple 32-bit
R/W register can be split into 4/2 consecutive accesses without affecting the functionality. However, due to side-effects
on several registers, there are following limitations when accessing CTU CAN FD from 8/16 bit buses:

e CTU CAN FD must be used in RX buffer manual mode (MODE[RXBAM] = 0). This is necessary since read of
single word from RX buffer can not be done by single read access to RX_DATA register. On 8 bit systems, it will
require 4 reads (addresses RX_ DATA .. RX_DATA + 0x3), on 16 bit systems it will require 2 reads (addresses
RX_DATA and RX_DATA + 0x2). Since each read from RX_ DATA register in RX buffer automated mode
(MODE[RXBAM] = 1), will move RX buffer read pointer, the rest of the memory word would be lost without
being read out. Thus it would be impossible to correctly read out received frames. Reading out RX buffer on
8/16 bit systems thus requires operation in MODE[RXBAM] = 0 and manually moving RX buffer read pointer by
COMMANDI[RXRPMV] bit.

e On 8 bit systems, TX PRIORITY register is only able to change priority of TXT buffers atomically if number
of TXT buffers is 2. On 16 bit systems, TX PRIORITY register is only able to change priority of TXT buffers
atomically, if number of TXT buffers is 2-4. Atomic change of TXT buffer priorities is required if TXT buffers are
used like a FIFOs by priority rotation (such approach is used by CTU CAN FD Linux driver). Thus, if TXT buffer
priorities need to be rotated atomically, following restrictions apply:

— On 8 bit systems, only 2 TXT buffers must be used.
— On 16 bit systems, only up to 4 TXT buffers must be used.

— If atomic rotation of priorities is not required, number of TXT buffers is not restricted.

2.2 CAN Bus

CTU CAN FD interfaces to physical layer transceiver via can_rx and can_tx pins. can_rx input is assumed to be
asynchronous to System clock (see 2.4) and it is treated like asynchronous signal. can_tx output is synchronous to
System clock. can_ tx output is glitch-free during operation on CAN bus as long as MODE[LOM] bit is not changed.

11

sugg CTU CAN FD IP Core - System Architecture 2. INTERFACES
/i:f Version 0.21, Commit:5d16182, 2026-02-01

2.3 Timestamp

CTU CAN FD interfaces to system level Time base via timestamp input. timestamp input is assumed to be synchronous
to System clock, and therefore there is no resynchronization on this input. If timestamp is unused (no Timestamping /
Time Triggering capability), it shall be driven to OxFFFF FFFF FFFF FFFF. If timestamp is used, it shall be driven by
unsigned up-counting counter which measures flow of time within a system to which CTU CAN FD is being integrated.
timestamp does not need to be incremented every clock cycle of System clock, nor there is a constraint on step that it
is incremented with, it only needs to be synchronous to System clock. If system level time counter has lower width than
64 bits, integrating system shall connect such counter to lower bits of timestamp input, and drive unused high bits to
zero. Integrating system shall also set active _timestamp__ bits to width of such counter - 1 (e.g. when system has 32
bit timestamp, it shall be connected to timestamp[31:0] and active _timestamp__ bits=31).

2.4 Clock and reset

CTU CAN FD is clocked via single clock input which represents System clock domain. Name of clock signal is different
depending on used memory bus wrapper as is shown in Table 2.5. CTU CAN FD has single external reset which is treated
as asynchronous reset, and it is internally synchronized by reset synchronizer (see 3.3). Note that AHB bus specifications
requires hresetn to be synchronous to hclk. CTU CAN FD implemenation is more relaxed, and does not require these
signals to be synchronous to hclk (System clock), since it handles reset synchronisation internally. res n_out signal
output contains synchronized version of res n/arstn/hresetn input. It can be left unconnected, or it can be used as
an indication that reset has been completed and CTU CAN FD can be accessed on its memory bus.

Table 2.5: Clock signal names

Bus type Clock signal name Reset signal name
RAM-like sys clk res n

APB aclk arstn

AHB hclk hresetn

2.5 Test probe

CTU CAN FD contains test probe record output. This signal is used by CTU CAN FD test-bench to peek inside
the design of CTU CAN FD. When integrating CTU CAN FD, this output can remain un-connected. Reffer to [8] for
description of how to connect test-probe if integrating CTU CAN FD VIP. This signal has no effect on design functionality,
and it can remain unconnected in design to which CTU CAN FD is integrated.

2.6 Scan enable

CTU CAN FD design is DFT insertion friendly. When scan _enable = 1, CTU CAN FD is in scan mode. In scan mode,
the following is valid:

e All hand-instantiated clock gates in CTU CAN FD are un-gated (to make sure that scan chain is always clocked).

e All resets which depend on value of other flip-flops are gated (to avoid reseting part of scan chain during scan
operation).

12

ﬂ)<
R

CTU CAN FD IP Core - System Architecture 2
Version 0.21, Commit:5d16182, 2026-02-01

INTERFACES

scan_enable input shall be controlled by SoC level DFT controller, and it shall be connected to the same signal which
enables scan mode on inserted scan flip-flops. If CTU CAN FD is used in FPGA (target__technology = 1), scan_enable
shall be tied low. scan__enable signal shall be driven synchronous to System clock.

2.7 Configuration options

CTU CAN FD is configurable on top level interface via VHDL generics which are explained in Table 2.6.

Table 2.6: CTU CAN FD generic parameters

Name Type Default | Range Description

rx_buf size natural | 128 32-4096 Size of RX buffer RAM in 32 bit words. See 4.2.

txt_buffer count natural | 4 2-8 Number of TXT buffers. See 4.4.

sup filt A boolean | true true/false | Synthesize filter A. See 4.3.

sup _filt B boolean | true true/false | Synthesize filter B. See 4.3.

sup filt C boolean | true true/false | Synthesize filter C. See 4.3.

sup _range boolean | true true/false | Synthesize range filter. See 4.3.

sup_traffic counters boolean | true true/false | Synthesize traffic counters. See 4.1.8.

target technology natural | 1 0-1 Target technology (set 0 for ASIC, set 1 for FPGA).

sup test registers boolean | true true/false | Synthesize test registers.

sup _parity boolean | false true/false | Add parity protection to TXT buffers / RX buffer.

reset_buffer rams boolean | false true/false | When true, TXT buffer and RX buffer RAMs are reset
by res n.

active_timestamp _bits | integer | 63 0-63 Number of active timestamp bits minus - 1.

13

3. System architecture

3.1 Block diagram

Detailed block diagram of CTU CAN FD IP Core is shown in Figure 3.1.

can_top_level nt "
. nterrupt sources
Interrupt | [interrupt_manager |« : Vetad prescaler — - —
: tore Metadata [bit_time_cfg_capture || bit_time_counters (Nomlnal)| bit_time_fsm|
interrupt_module Data Overrun [T 7 ee (Filtered) =
= “Store Data | [rame_fifters [synchronisation_checker || resynchronisation (Nominal)|
HE rx_buffer_fsm (Filtered) mask_filter (A)
o\z|% HEE - |trigger_generator || bit_time_counters (Data) |
EHERHRAR o TV [T Reception Abort{| mask_filter (B)
17" LB = = i = bit_time_cfg_capture resynchronisation (Data
gls(e (Filtered) | ek fitter (0) [T e s (EECT
3o N :
Y 2 [% Read Command rx_buffer_pointers Reception Valid R 4 ~ r
memory_registers [Erase Buffer (Filtered) = ¢ 2 |3 3 v
|—crase butrer , | < g
control_registers|| Clear Overrun b=tz4 Fe ERPREE g % 5 . 3
TR 3 s 3 H
RX Buffer Word 288 c 128133 Z & s |88
Empty Frame Commit, RX Metadata glg|2 |5 S leg |22 % |% 5§ g
- 3 o2 S = (85 = =3
Weriary T (o) o1 [2[2fE|2 | 3] 5 ‘HE
Bus Driving Bus w Word 3|2 s P .
i Size can_core bus_sampling
Configuration record T SOF Pulse protocol_control can_crc
Status record | protocol¥conmolism | imoslef) Secondary || data_edge_detector
E3E Transmission - : cre_cale(17) Sample
3 f % TXT Buffer priorites 1 valid tx_shift_register o calei2) Reset tx_data_cache CAN RX
MERFE P le——— - - 2 <
R tx_arbitrator X rx_shift_register Transceiver || bit_error_detector CANTX
g b - = >
HERE Buffers tx_arbitrator_fsm Metadata ,Wl bit_stuffing Delay
I - , Ready Frame valid = _ - Calibration | [trv_delay_meas
ot butfer s | =t | T Buffer " | [retransmitt_counter | bit_destuffing_| Ssample
= ° us Metadata Loading, word fault_confinement Control |
txt_buffer_fsm Pointer Multiplexing, TXT Buffer fault_confinement rules
“Timestamp comparing N Bit Error SSP Shift register
Logic Pointer Addressing, Majorif
txt_buffer_ram vy % operation_control fault_confinement_fsm |||, RX Data decoding Logic
error_counters TXData
y HW Commands i
Timestamp

Figure 3.1: CTU CAN FD - Detailed block diagram

3.2 Reset architecture

CTU CAN FD IP Core can be reset by two means: External reset and Soft Reset. Both reset sources are described
in Table 3.1. Both reset cause assertion of internal System reset which resets whole CTU CAN FD including Memory
registers. Reset architecture is shown in Figure 3.2. An example of reset sequence by both External and Soft reset are
shown in Figure 3.3. Note that all DFFs in Figure 3.2 are clocked by System clock.

14

st.ag CTU CAN FD IP Core - System Architecture 3. SYSTEM ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Table 3.1: Reset description

Reset Name Asserted by Reset description
RAM like interface: To be used by HW reset structure integrating CTU CAN FD
External Reset res n=0. (e.g. POR, System level reset controller). CTU CAN FD shall
AHB interface: not be accessed for two System clock periods after External
hresetn = 0. reset was de-asserted (or until res _n_out = 1). Asserting
APB interface: External reset does not require System clock to be running.
aresetn = 0. De-asserting reset requires System clock to be running.
Soft Reset Writing MODE[RST] = '1". To be used by SW for resetting CTU CAN FD. System clock
must be running when this reset is asserted (needed for Bus
access and pipeline DFF).

res_sync Synchronised
Reset
Lo o a
> >
External CLR CLR
Reset Q Q System
L e
Soft IR
Memory Memory registers Reset D Q
Bus S

Figure 3.2: Reset structure

System clock

\ T

External reset T c
Soft reset Assert De-assert e~ 9
J'. \»\ Ass{l’. De-assert
System reset b 4 If‘ Th‘

Figure 3.3: Reset operation

3.3 Clock architecture

CTU CAN FD IP Core contains one clock domain: System clock. There are no divided clocks in CTU CAN FD, thus
no “generated clocks” are needed when writing SDC constraints. All timing related information (e.g. time quanta) are
derived from System clock via clock enable signals. This makes CTU CAN FD fully synchronous design with no clock
domain crossing.

CTU CAN FD is assumed to be implemented in a single power domain, all parts of CTU CAN FD must be either turned
on or off. To reduce dynamic power consumption, majority of registers are written to allow usage of “clock enables”
(FPGASs) or inferred “clock gating” (ASIC).

15

2 CTU CAN FD IP Core - System Architecture 3. SYSTEM ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

If target technology = 0 (ASIC), hand-written clock gating is implemented for Memory registers, RX buffer RAM
and TXT buffer RAMs. If target technology = 1 (FPGA), no hand-written clock gating is implemented, clocks for
memory registers RX buffer RAMs , and TXT buffer RAMs are always enabled. There is no functional difference between
ASIC/FPGA target technology (even if clocks are always enabled, registers are wrriten only when enabled).

The manually used clock gating cell (clk _gate.vhd) has Latch + AND type. It is recommended to replace clk _gate with
with Integrated clock gating cell by rewriting content of clk gate.vhd.

If target technology = 1 (FPGA), then clk _gate.vhd does not gate clocks, but only connects input clock to output
clock.

If CTU CAN FD is implemented in SoC system, it is recommended to implement configurable clock gating for whole
CTU CAN FD peripheral on system level to save power when CTU CAN FD is not clocked. In such situation, CTU CAN
FD ignores traffic on CAN Bus, and continously transmitts recessive bits to CAN Bus.

3.4 Testability

CTU CAN FD contains following features for manufacturing testability:

1. Memory testability - Allows direct read/write access to TXT buffer RAMs and RX buffer RAM. This approach is
supported only when Test registers memory region is synthesized (sup _test registers = true). It is reccommended
to synthesize Test registers only for ASIC implementations (target technology = 0). Enabling Test registers for
FPGA implementations is usefull only to test parity protection of RX / TXT buffer RAMs, since access from Test
Registers bypasses parity encoding mechanism.

2. Scan mode (via scan_ enable input) - In scan mode, all clock gates are enabled, and all reset signals which depend
on other signals (generated reset) are gated.

3.4.1 Memory testability

Each memory within CTU CAN FD can be tested at production via Test Registers (e.g. executing SW driven march
pattern test). Any data can be written to any address inside each memory. Memory testability is available only in Test
Mode (MODE[TSTM] = 1). If CTU CAN FD is not in Test mode, accesses to whole Test registers block are ignored.
Memory testability has its own “enable” bit (TSTCTRL[TMENA]), which must be set to enable memory testing via Test
Registers. An example of memory testing is shown in Table 3.2. Note that this test sequence is only an example. Since
Test registers provide independed Read/Write functionality to arbitrary addresses, any known testing approach can be
used (any address step, direction or data pattern can be used).

3.5 Sequential logic

CTU CAN FD logic is implemented from DFFs with asynchronous reset.

TXT buffer and RX buffer RAMs (see 3.7) are by default implemented from DFFs. All DFFs are active on positive clock
edge. CTU CAN FD is latch free (apart from latches within clock gate cells). These facts can be used as a sanity check
that there should be no DFFs without Set and Reset within CTU CAN FD after synthesis (apart from TXT buffer / RX
buffer RAMs, if they are synthesized, not inferred, nor replaced by Hard RAM macros).

16

st:(gg CTU CAN FD IP Core - System Architecture 3. SYSTEM ARCHITECTURE
/i:f Version 0.21, Commit:5d16182, 2026-02-01

Table 3.2: Memory testing example

Step Action

1 Set MODE[TSTM] = 1 and TSTCTRL[TMENA] = 1. This enables memory testing.

2 Configure target memory to be tested in TST DEST[TST _MTGT] register. Set
TST_DEST[TST_ADDR] = 0 (initial address).

3 Write test pattern to TST WDATA register. It is up to user to choose test pattern.

4 Execute write to the memory by writing TSTCTRL[TWRSTB] = 1. Note that TSTCTRL[TMAENA]
must remain set.

5 Increment address in TST _DEST[TST _ADDR]. If this is last address within tested memory, then go to
Step 6. Otherwise go to Step 3.

6 Set TST DEST[TST_ ADDR] = 0 (initial address).

7 Wiait for 1 System clock clock cycle (read from RAMs is pipelined).

8 Read value from TST RDATA. Check that value read from this register matches what has been written
TST _WDATA register in Step 3. If value does not match, test fails.

9 Increment address in TST_DEST[TST _ADDR]. If this is last address within tested memory, then go to
Step 10. Otherwise go to Step 7.

10 Test is successfull.

3.6 Resynchronisers

Resynchronisers within CTU CAN FD IP Core are listed in Table 3.3.

Table 3.3: Resynchronisers

Resynchroniser function Resynchroniser Type Resynchroniser path
Resynchronisation of External Reset | Reset Synchroniser can_top level\rst sync_inst
Resynchronisation of CAN RX Data | Signal Synchroniser can_top_level\ bus_sampling_inst\
Stream can_rx_sig sync_inst

3.7 Memories

CTU CAN FD contains memories which are used to store CAN FD frames. These memories are parts of RX buffer and
TXT buffers (see 4.2 and 4.4). List of memories is shown in Table 3.4. The TXT buffers and RX buffers can be either
with or without reset:

o If reset buffer rams = false, TXT buffer RAMs and RX buffer RAM are not reset.

— The memories initialize to X.
On FPGA, SRAM / BRAM blocks are inferred.

On ASIC, DFT insertion may be complicated since DFFs of TXT buffer and RX buffer RAM are not control-
lable.

ASIC fault-coverage can be achieved by functional test via Test Registers.

o If reset buffer rams = true, TXT buffer RAMs and RX buffer RAM are reset.

— The memories initialize to 0.
— On FPGA, SRAM / BRAM blocks will not be inferred.

17

st.%gg CTU CAN FD IP Core - System Architecture 3. SYSTEM ARCHITECTURE
/rf Version 0.21, Commit:5d16182, 2026-02-01

— On ASIC, DFT insertion is easy since DFFs of TXT buffer and RX buffer are as any other registers.
— ASIC fault coverage can be achieved by DFT + ATPG, no need to synthesize Test Registers.

When integrating CTU CAN FD to ASIC, integrator can either replace these memories by hard macros, or leave memory
implementation to synthesis tool. In such case, memory is synthesized from DFFs.

Each memory is synchronous memory with one clock cycle latency on data read, and one cycle write access latency. Both
memories are dual port memories with write-only port A, read-only port B, and the same clock signal is used to clock
both ports. If true dual port memories are used, write data/enable of Port B shall be driven to 0. Memory word width
is 32 bits, and it must support byte-enable capability. An example of memory access is shown in Figure 3.4. In case of
read during write, memories return old data value, there is no “bypassing” implemented.

Table 3.4: RAM memories

Memory | Write | Instance Name Instances | Depth Word Address | Port A | Port B | Read
location | mask Width | size Access | Access
RX No rx_buffer_ram | 1 32- 32 5-12 CAN Memory | Synchronous
buffer 4096 Core Regis-
RAM ters
TXT No txt_buffer_ram | 2-8 20 32 5 Memory | CAN Synchronous
buffer regis- Core
RAM ters

systemolock [| [| [L[[L[L [1

Port A Address X 1 X7 U
Port A Data (write) /XAA55AA55Y" W

Port A Write I\ //

Memory content X /| AA55AA55

Port B Address %@(1 X
Port B Data (read) U /\AA55AA55Y

Figure 3.4: Dual port memories access

3.8 Pipeline architecture and triggers

Processing of data on CAN bus in CTU CAN FD is pipelined into three stages which are described in Table 3.5. This
architecture meets maximal information processing time when System clock is equal to time quanta (prescaler is 1).
Since processing takes two clock periods information processing time of CTU CAN FD is 2. Due to this, minimum time
quanta of CTU CAN FD is 1.

Each stage of pipeline processing is controlled by a trigger signal which is active for one clock cycle. Trigger signals are
used to synchronise data transfer in exact moments to meet bit timing requirements on CAN Bus. Trigger signals are
used as clock enable signals for DFF which processes data in according pipeline stage. If a trigger signal is inactive,
processed data remain on DFF output and keep their previous value (data after bit destuffing (RX) and bit stuffing
(TX)). An example of pipeline processing is shown in Figure 3.5. Note that Process pipeline stage always occurs one

18

st.ag CTU CAN FD IP Core - System Architecture 3. SYSTEM ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

clock cycle after Destuff pipeline stage. Between Process and Stuff pipeline stage there will be number of clock cycles
where no data are processed. This gap corresponds to TSEG2 (see 4.7.1 for definition of TSEG2).

System clock + | + | +“ | + // + | +“ | + |

can_rx e Bit N // X BitN+1
can_tx D\e\st\uﬂ Bit N // i Bit N + 1
Destuffed data (RX) Bit N - 1 S [s BitN
Pre bit-stuffing data (TX) Bit N P\m%/ Bit N + 1

Pipeline stage 7/X_Destuff Process X/ %@ Stuff
RX Trigger 0 I //
RX Trigger 1 —\ //
TX Trigger W

Bit time segment TSEGH TSEGP TSEGH

\ v
b d

Sample point Transmitt next bit

Figure 3.5: Datapath pipeline processing

In case of negative resynchronisation, length of TSEG2 can be shortened to less then 2 clock cycles. In such case,
following TX Trigger signal is throttled by one clock cycle and overall length of bit remains unaffected. Such situation is
further described in 4.7.7. A high level algorithm for processing of data on CAN bus is described in Table 3.7.

Table 3.5: Pipeline stages

Index | Pipeline Trigger signal Corresponding Modules which process | Description
stage moment on CAN | data in this pipeline
Bus stage
1 Destuff RX Trigger (0) Sample point Bus Sampling, Bit Stuff Bits are removed
Destuffing from can rx and

destuffed data are
provided to Protocol

control.
2 Process RX Trigger (1) One clock cycle Protocol Control Destuffed data are
after Sample processed by Protocol
point control, value of

following transmitted
bit is determined and
provided as TX data
before bit stuffinh.

3 Stuff TX Trigger Start of Bit time | Bit Stuffing Stuff bit is inserted to
TX data before bit
stuffing and propagated
to can_ tx.

19

st.%g CTU CAN FD IP Core - System Architecture 3. SYSTEM ARCHITECTURE
/rf Version 0.21, Commit:5d16182, 2026-02-01

Table 3.7: Pipeline stages - algorithm

Step| Step Description Pipeline Module
Stage
1 can_ rx input is synchronised to System clock domain. Delay imposed by | -
synchronisation is treated as wire delay and it is ignored.
2 Bus value is sampled to save information about previous sampled bus Destuff Bus Sampling

value for next edge detection. Synchronisation edges are detected on
can_ rx and propagated to Prescaler. can _rx value is propagated to Bit
Destuffing module.

3 Bit de-stuffing is performed in Sample point, and destuffed data are Destuff Bit Destuffing
provided on output of Bit Destuffing module.

4 CRC from RX bit value with stuff bits included (can rx) is calculated. Destuff CAN CRC

5 Destuffed data are sampled by Protocol control, RX shift register is Process Protocol Control

shifted, TX shift register is preloaded by following bit to be transmitted,
Protocol control FSM state is updated.

6 CRC from destuffed data is calculated. Process CAN CRC
7 Stuff bits are inserted to TX bit value on output of TX shift register by Stuff Bit Stuffing
Bit Stuffing module. Value on output of Bit Stuffing module is
propagated to can tx output.

8 TX shift register is shifted. Stuff Protocol Control
9 CRC from output of TX shift register (TX data before bit stuffing) is Stuff CAN CRC
calculated.

10 | CRC from TX data with bit stuffing is calculated. As this stage does not | Stuff + 1 CAN CRC
affect data transmitted on the bus in the actual bit, it is not considered as | clock cycle
separate pipeline stage.

3.9 CAN Frame metadata

Through this document, term “"CAN frame metadata” is used to describe information shown in Table 3.8. In TXT buffers
and RX buffer, metadata are stored in Frame Format word as is shown in Chapter 4 of [2].

3.10 CAN Frame format

CAN frame spans multiple 32-bit words in TXT buffers and within RX buffer RAMs (see 4.4 and 4.2). One TXT buffer
always contains single frame. RX buffer contains multiple frames one after another in a RX buffer RAM. Format of CAN
frame within these memories is the same with following exceptions:

e ESI bit in TXT buffer has no meaning while in RX buffer ESI has value of received ESI bit on CAN bus

e RWCNT field in TXT buffer has no meaning while in RX buffer it contains number of words that current frame
takes in RX buffer without Frame Format word).

e FRAME_TEST W word is available only in TXT buffer RAM, not in RX buffer RAM.

Meaning of memory words within CAN frame is described in Table 3.9. Meaning of individual bits can be found in
Chapter 5 of [2].

20

2 CTU CAN FD IP Core - System Architecture 3. SYSTEM ARCHITECTURE
/tfg Version 0.21, Commit:5d16182, 2026-02-01
Table 3.8: CAN frame metadata
Name Abbreviation | Possible values Description
Identifier type ID_TYPE BASE (0), EXTENDED | Distiguishes frames with base identifier (BASE)
(1) only and frames with identifier extension
(EXTENDED).
Frame type FR_TYPE | NORMAL _CAN (0), Distiguishes CAN 2.0 frames and CAN FD frames.
FD_CAN (1)
Remote RTR NO RTR_FRAME Distinguishes between Data Frame and Remote
Transmission (0), RTR_FRAME (1) | frame. When frame is CAN FD frame, RTR bit
Request has no meaning.
Bit Rate Shift flag BRS BR_NO_SHIFT (0), Distinguishes if bit rate will be shifted in CAN FD
BR_SHIFT (1) frame or not. This bit has no meaning in CAN 2.0
frames.
Error State ESI ESI_ERR_ACTIVE Value of received ESI bit. This bit has no meaning
Indicator (0), in CAN 2.0 frames. This bit has no meaning in
ESI ERR_PASSIVE TXT buffers. Value of transmitted ESI bit is
(1) always given by actual Fault confinement state.
Data length code DLC 0 - 15 as defined in [1] | Data length code determines length of data field
within CAN frame.

Table 3.9: CAN frame format - memory words

Name of memory
word

Name in register
map (see [2])

Description

Frame Format

FRAME_FORM_W

Contains CAN frame metadata and additional per-frame information.

Identifier

IDENTIFIER W

Contains base identifier base and identifier extension.

Timestamp Low

TIMESTAMP _L_W

Contains lower 32-bits of CAN frame Timestamp (in RX buffer as
sampled during frame reception, in TXT buffer as inserted by user).

frames.

Timestamp High | TIMESTAMP _U_W/| Contains upper 32-bits of CAN frame Timestamp (in RX buffer as
sampled during frame reception, in TXT buffer as inserted by user).

Data words DATA X Y W Contain CAN frame data payload transmitted/received during data
frame field.

Frame Test FRAME TEST W | Contains metadata for intentional corruption of transmitted CAN

3.11 Test mode

CTU CAN FD is in Test mode when MODE[TSTM] = '1'. Features of test mode are listed in Table 3.10.

21

2 CTU CAN FD IP Core - System Architecture 3. SYSTEM ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Table 3.10: Test mode features

Relevant Description
register
CTR_PRES | CTR_PRES is writable and allows setting values of transmitt error counter, receive error counter,
nominal error counter and data error counter.

EWL EWL register is read-write therefore Error warning limit is configurable by SW.

ERP ERP register is read-write and Error passive threshold is configurable by SW. When either
transmitt error counter or receive error counter reaches Error Passive threshold, unit becomes
error passive.

TST CONTROEst registers are writable, therefore it is possible to directly read/write RX buffer RAM and TXT
TST_DEST,| buffer RAMs. This feature is available only when sup test registers = true.

TST_ WDATA,
TST_RDATA
FRAME TES$STTW CAN FD uses bits in FRAME _TEST _W to intentionally corrupt transmitted CAN frames.

3.12 Integration vs. Reintegration

In this document term “Integration” means attempt to detect 11 consecutive recessive bits after logic 1 was written to
SETTINGS[ENA] (CTU CAN FD was turned on). Term “Reintegration” means attempt to detect 129 ocurrences of 11
consecutive recessive bits after node went bus off and logic 1 was written to COMMAND[ERCRST] (SW Requests to

rejoin the bus).

22

4. Sub-blocks architecture

4.1 CAN Core

File: can_core.vhd

CAN core block diagram is shown in Figure 4.1. CAN core is structural entity that instantiates other modules and by
itself it implements nearly no logic. An exception to this rule are two multiplexers as shown in Figure 4.1. Multiplexor on
TX datapath (green color) multiplexes between transmitted data after bit stuffing or constant recessive value. Constant
recessive value is sent to the bus in bus monitoring mode. Multiplexor on RX datapath (red color) multiplexes input data
to Bit destuffing module. During normal operation, can_rx input is used. When secondary sample point is used, data
after bit stuffing are taken (transmitted data are looped back to make sure that Protocol control FSM receives proper
value as real received value can be delayed by several bits). In bus monitoring mode, data afer bit stuffing are logically
ORed with can_ rx from input of CAN core (this corresponds to re-routing transmitted bit value internally as defined in
10.14 of [1]).

23

g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ 5 Version 0.21, Commit:5d16182, 2026-02-01

can_core Reception Valid
=) "
]) Transmission bus_traffic_counters
Reception Valid protocol_control can_crc "
< - = Calculated CRCs Yol (15) — Valid |
Reception Abort protocol_control_fsm < = =
< - - o o
Store Metadata CRC Speculative Enable || cre_calc(17) - S3 |52
" Store Data CRCEnable __|[erc_calc21)][2 8
< tx_shift_register ”] -«
R&IDE‘: - - A A Recessive
< TX Data (No Bit Stuffing) _ TX Data TX Data
SOF Pulse | bit_stuffing v
rx_shift_register Stuff Enable = (With Bit Stuffing)
_ Data Halt »
_ Stuff counter
T . ol : Stuff Length
ran\jrrp(sjsnon control_counter Fixed Stuff RX Data
ali . > o
< <RX Data (No Bit Stuffing) R (With Bit
« it_destuffin, ;
TX Metadata | : | “Destuffed = 8 | Stuffing)
- < <
Frame valid , retransmitt_counter Destuff counter < RX Data
TXT Buffer De-Stuff Enable .
word N i
TXT Buffer error_detector -
P Pointer 3 3oy Destuffed trigger_multiplexor
< S ®3 58 7|z
g7 38022 7|z Data Halt >
X1 4 35 22828¢ |7|F T
” 5232232y |23 @
ol |2 P 8§ 3958 523 |Ga]n . .
MEAME | _ 27 %2 2%&7 |a|8|8 L CRCTriggers < Trigger
3 |=|®|5 2 3 5/38 25 Rlelz <
(B2 2|7|= 38 25 &FR 5|®
3|2|%(S sz |2 - Bit Stuffing Tri RX
E1E w2 3|25 = - it Stuffing Trigger Triggers
= =4} .) L
8 a il alticontinement Bit De-Stuffing Trigger <t
[fault_confinement_rules | —
Y YYyYy [fault_confinement_fsm |]
operation_control Protocol control Triggers
[error_counters] - BT
Legend: Fault Confinement
TX Data stream RX Data stream Control TXT Buffer Interface RX Buffer Interface
—1X Datastream ,, _RALalasueam,, > >

Figure 4.1: CAN Core - Block diagram

24

g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ 5 Version 0.21, Commit:5d16182, 2026-02-01

4.1.1 Protocol control

File: protocol control.vhd

Protocol control diagram is shown in Figure 4.2. Protocol control is structural entity thah only instantiates other modules

and by itself it implements no logic.

_ RX Metadata protocol_control . .
" RX Data Word rx_shift_register
_ RXIdentifier B RX Trigger
_ Reception Valid Store signals
:Reception Abort protocol_control_fsm Enable ' RX Data
_ Store Metadata Input Selector ™
b Store Data Clear -
D SOF Pulse v
Transmission Valid RXCRC| RXStuff
Frame valid Error frame Count CRC
TXT Buffer Pointer . request error_detector D Stuff Count
HW Command . CRCMatch Error Counters
A) CRC Source Unchanged >
: n Preload > Error Capture
reintegration_counter |« >
. CRC Check > Error Detected
Zero Active Error,
< Preload Overload Flag
control_counter < Value Error Delimiter
Expired > Late .
Byte Index Primary Error
Counted Sample Control
Byte Load signals | prT——
> tx_shift_register
TXT Buffer _ _ Preload Enable | TXData
Changed retransmitt_counter [« Input Selector | >
> Limit Reached | Clear >
TXT Buffer Word - > ’ TX Trigger
TX Metadata :
4 4 4 4
[AAE
RS SERE
5 |3 Sz |z
= [

Legend:

TXT Buffer Interface RX Buffer Interface

Figure 4.2: Protocol control - Block diagram

25

sx.ag CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Protocol control FSM

File: protocol control fsm.vhd

Protocol control FSM implements following functionality:

e Transmits and receives CAN frames.

e Controls Control counter, Retransmitt Counter, Re-integration counter.

e Controls TX Shift Register.

e Controls RX Shift Register. Storing values from RX Shift register to RX buffer.

e Reads transmitted frame from TXT buffer (addressing and reading data words from TXT buffer).

e Stores received frame to RX buffer.

e Controls measurement of transmitter delay.

o Controls TXT buffers and TX Arbitrator via HW Commands.

e Controls synchronisation (no synchronisation, hard synchronisation, resynchronisation)

e Controls bit rate switching (Nominal Sample, Data Sample, Secondary Sample).

o Performs form error detection.

e Evaluates results of CRC check.

e Handles arbitration.

Protocol control FSM state transition diagam is shown in Figure 4.3. Rules for Protocol control FSM state transitions
are described in Table 4.1. Protocol control FSM does not change its state in any other moment. The regular change of
Protocol control FSM state corresponding to e.g. transition from control field to data field occurs one clock cycle after
sample point (in Process pipeline stage).

Table 4.1:

Protocol control state transition rules

Condition of state
transition

Pipeline stage when
transition occurs.

Description

Regular condition

Process

Transition corresponds to regular change of CAN frame field (e.g. stuff
count to CRC).

Error frame
request

One clock cycle
after Process

Transition corresponds to start of active error flag or passive error flag
and can occur from any state of Protocol control FSM.

26

g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ 5 Version 0.21, Commit:5d16182, 2026-02-01

TX Frame
Ready and

RX Data Recessive
SOF
RX Data Dominant

BASE ID RTR/SRR/R1 °

RX Data RX Data
Recessive Dominant

o

otocol

exception
EDL/RO I

Error Frame Request when
unit is Error Active

RX Data Recessive
Error Frame Request when

unit is Error Passive @ @
RX Data Protocol Protocol exceptio
Active Error
Flag

Dominant exception

RX Data
Dominant

ISOFD and
No Data Field

@ FD Frame Pata CAN 2.0 frame e
CAN FD Frame CRC
Delimiter

Passive Error
Flag

DLC ¢

7 Dominant
bits sampled

RX Data RX Data
Recessive | Dominant

Notin ROM mode

Overload
Flag

RX Data
Recessive

Error

L/
@ CAN 2.0
Delimiter 7 Dominant glame
Bits sampled
RX Data
Recessive RX Data RX Data
Recessive Recessive
1 InROM Mode .‘_ Overload °
% RX Data Delimiter Delimiter
Dominant RX Data RX Data

Recessive Recessive

TX Frame ready or RX Data Dominant

Error Passive RX Data
JTransmitter

Intermission

Dominan
Node is Bus-off

Node is Bus-off

TX Frame ready or RX Data Dominant

Node disabled

Error Frame Request in

Restricted Operation mode
Integrating

Legend:

State duration
controled by
ontrol Counte

State duration
=1 bit

Figure 4.3: Protocol control FSM

27

sugg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Control counter

File: control counter.vhd

Control counter measures duration of CAN frame fields which last longer than 1 bit. These fields and according con-
figuration of Control counter are shown in Table 4.2. Control counter counts towards zero. It is decremented by 1 in
each bit of CAN frame field in Process pipeline stage. A current CAN frame field ends when Control counter is zero.
Control counter is not counting during CAN frame fields which last only 1 bit (e.g. IDE bit), nor during fields which
might last arbitrary number of bits (bus idle). An example of Control counter operation during base identifier in CAN
frame is shown in Figure 4.4.

Table 4.2: Control counter

CAN Frame field Control counter preload value
Base identifier 10
Identifier extension 17
Data length code 3
Data Depends on transmitted / received data field length.
CRC 14, 16, 20 - depends on length of CRC sequence
Stuff count (+ Stuff parity) 3
End of Frame 7
Interframe space 2
Suspend transmission 7
Integration 10
Error flag, overload flag 5
Error delimiter, Overload delimiter 7
Re-integration 11, preloaded 129 times.
CAN frame field SOF X Base Identifier XSRR) IDE

Control countervalue 77774 10 X 9 X 8 X 7 X 6 X 5 X 4 X 3 X 2 X 1 X 0

Figure 4.4: Control counter operation

Control counter module contains a complementary counter which counts from 0. Complementary counter is incremented
by 1 each bit time in Process pipeline stage and it counts only during data field. Complementary counter provides
information that data byte has elapsed (when counter mod 8 == 0), or whole memory word has elapsed (when counter
mod 32 == 0). Complementary counter addresses memory words between addresses 4 (DATA 1 4 W) and 19
(DATA_61_64_ W) in TXT buffer. Complementary counter decodes address of Data memory word within TXT buffer
according to following equation:

Control counter) +4

Memorywordindex = (D)

Control counter module implements Arbitration lost capture register. Arbitration lost capture register stores position
within CAN frame at which arbitration was lost. Arbitration lost capture register is loaded when arbitration lost is
signalled by Protocol Control FSM in Process pipeline stage. Arbitration lost capture saves current value of Control
counter (determines bit at which arbitration was lost) and bit field type within arbitration (base identifier, IDE bit,
identifier extension, etc.) when arbitration was lost. Arbitration lost capture register is readable by SW via ALC register.

28

f&ggg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/rf Version 0.21, Commit:5d16182, 2026-02-01

Meaning of values in Arbitration lost capture register is described in [2]. An example of Arbitration lost capture register
is shown in Figure 4.5.

CAN frame field SOF X Base Identifier XSRR) IDE
Control counter value %10X9X8X7X6X5X4X3X2X1XOW

Arbitration lost /_\

ALC[ALC_BIT] W 6
ALC[ALC_ID_FIELD] M 00

Figure 4.5: Arbitration lost capture

Retransmitt counter

File: retransmitt_counter.vhd

Retransmitt counter controls number of retransmissions of a single CAN frame from a single TXT buffer. Retransmitt
counter counts from zero, and it counts only when retransmitt limitation is enabled by user (SETTINGS[RTRLE] = '1").
When retransmitt limitation is disabled (SETTINGS[RTRLE] = '0") CAN frame transmission is attempted indefinitely.
Retransmitt counter is incremented by 1 when arbitration is lost, or when error frame transmission is requested by Error
detector (reffer to 4.1.1).

When error frame and arbitration loss occur in the same frame, retransmitt counter is incremented only once (such a
situation is shown in Figure 4.7). When multiple error frames occur in the same frame (e.g. due to error during error
frame), retransmitt counter is also incremented only once.

When Retransmitt counter reaches retransmitt limit (SETTINGS[RTRTH]), it signals this to Protocol control FSM. In
case of next arbitration loss or error frame request, Protocol control FSM stops transmitting the actual frame and active
TXT buffer moves to TX Failed state (see Figure 4.25). When unit is a receiver without attempt to transmitt a frame
(no frame was available during bus idle, intermission), retransmitt counter is not modified during this frame. When
unit is error passive and transmission of a frame is not succesfull, unit becomes receiver of next frame (due to suspend
transmission field) without attempting to transmitt a frame. If error occurs during next frame, retransmitt counter is not
incremented. Possible configurations of retransmitt limit are shown in Table 4.3.

Retransmitt counter is cleared when TXT buffer used for transmission changes between two consecutive transmissions
(another TXT buffer with another TX Frame selected by TX Arbitrator), as is described in Table 4.44. Retransmitt
counter is cleared upon succesfull transmission (TXT buffer goes to TX OK state) or when transmission fails (TXT
buffer goes to TX Failed state). Retransmitt counter is also cleared when TXT buffer which is currently used for
transmission goes to Aborted state.

Table 4.3: Retransmitt limit configuration

SETTINGS[RTRTH] | SETTINGS[RTRLE] | Behaviour

- 0 Frame transmission is attempted without any limitation until unit
turns Bus-off.
0 1 Frame transmission is attempted only once, there is no

retransmission attempt after first failed transmission (so called
one-shot mode).
1-15 1 Frame transmission is attempted SETTINGS[RTRTH] times.

29

i. CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
5 Version 0.21, Commit:5d16182, 2026-02-01

CAN Bus __ CAN frame _ XError frame/ __ CAN frame _ XError frame/ __ CAN frame XError frame/
Retransmitt counter 0 X 1 X 2 X 0
Retransmitt limit 2
Transmission type %{ Initial transmission W First re-transmission W Second re-transmission W
Operational state Idle X Transmitter X idle X Transmitter X idle X Transmitter X Idie
TXT Buffer state Ready Y_TX in Progress X Ready X TXin Progress) Ready X TXin Progress X TX Error

Figure 4.6: Retransmitt counter operation

CAN Bus \ CANframe XError frame/ \ CAN frame XError frame/ \ CANframe XError frame/
Retransmitt counter 0 X 1 X 2 X 0
Retransmitt limit 2
Arbitration lost /_\
Transmission type m Initial transmission W First re-transmission W Second re-transmission W
Operational state Idle X Transmitter X 1dle X Transmitter Y Receiver Y Ide ¥ Transmitter X Idle
TXT Buffer state Ready X_TXin Progress X Ready X TXin Progress) Ready X TXin Progress) TX Error

Figure 4.7: Retransmitt counter - arbitration loss and error frame

CAN Bus __ CAN frame)Error frame/ \ CAN frame XError frame/ \ CAN frame /
Retransmitt counter 0 X 1 X 2 X o
Retransmitt limit 2
Transmission type 7777/ Initial transmission i, First re-transmission 7/ Second re-transmission {77777
Operational state Idle X Transmitter X 1de X Transmitter X 1de X Transmitter X idle
TXT Buffer state Ready Y TX in Progress X Ready X TXin Progress X Ready X TX in Progress X _TXOK

Figure 4.8: Retransmitt counter - second retransmission succesfull

30

ﬂ)<
R

CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
Version 0.21, Commit:5d16182, 2026-02-01

Reintegration counter

File: reintegration counter.vhd

Reintegration counter counts 129 consecutive ocurrences of 11 consecutive recessive bits after CTU CAN FD turned
bus-off. Reintegration counter counts only during reintegration, not during initial bus integration. Reintegration counter
counts from zero, and it is cleared when unit is bus-off and it receives command to reset error counters (by writing logic
1 to COMMANDI[ERCRST] register). Reintegration counter is incremented by 1 after each 11 consecutive recessive
bits are received. 11 consecutive recessive bits are measured by Control counter. If during reintegration dominant bit is
detected, Control counter is pre-loaded again to 10 (there was dominant bit before 11 consecutive recessive bits were
reached). When reintegration counter reaches 128 (0-128 = 129 times), it signals this to Protocol control FSM. Upon
such event Protocol control FSM becomes Idle, unit becomes error active again and operation control state is changed
to Idle. An example use case of reintegration counter operation is shown in Table 4.4,

Table 4.4: Reintegration counter - use case

Step Action

1 CTU CAN FD is enabled by writing SETTINGS[ENA] = "1, After bus integration is over, unit becomes
error active.

2 CTU CAN FD takes part in bus communication. Due to error frames, it turns first error passive and then
bus-off.

3 SW is notified of such an event by FCS interrupt, then SW reads FAULT STATE register and finds out
that unit is bus-off.

4 SW decides that it wants the unit to join the network again. SW writes logic 1 to COMMAND[ERCRST]
(so called “error counter reset” command or “reintegration request”)

5 Reintegration counter is cleared. Control counter is preloaded to 10.

6 Control counter is being decremented by 1 for each recessive bit received by Protocol Control FSM. If
dominant bit is detected, Control counter is preloaded to 10 again.

7 After 11 consecutive recessive bits are received, Control counter is 0, it signals this to Protocol control FSM.

8 Protocol control FSM increments Reintegration counter by 1.

9 After 129 repetitions of 11 consecutive recessive bits (note that there can be CAN frames between
consecutive sequences of 11 consecutive recessive bits, these frames are ignored by CTU CAN FD),
Reintegration counter is 128. Reintegration counter signals this to Protocol Control FSM.

10 Protocol control FSM becomes Idle, CTU CAN FD becomes error active and it is ready to receive/transmitt
frames again.

31

sx.ag CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

TX shift register

File: tx_shift reg.vhd

TX shift register is 32 bit shift register which transmitts a bit sequence to the output of Protocol control module. TX
shift register is preloaded by Protocol control FSM in Process pipeline stage when new data sequence is about to be
transmitted, thus output value is also valid after Process pipeline stage of the same bit. TX shift register is shifted by
one position in Stuff pipeline stage of each bit on CAN bus during multi-bit frame fields. When stuff bit is inserted, TX
shift register is not shifted (Protocol control is halted for one bit).

TX shift register is preloaded according to Table 4.5. TX shift register is enabled only as long as unit is transmitter. TX
shift register is not shifting when unit is receiver, nor during CAN frame fields which last only one bit (SOF, ACK, etc.),
nor during fields which transmitt constant sequence (EOF, error flag, etc.). In such case constant value is transmitted
on its output. TX shift register shifts from lowest bit index to highest bit index (shifting up). Transmission of single bits
(e.g. SOF, ACK) or constant sequences (e.g. active error flag, EOF) is handled by separate logic inside TX shift register,
and has higher priority than transmission from TX shift register. Rules for handling of these situations are described in
Table 4.6. An example of TX shift register operation during CAN frame is shown in Table 4.7

Table 4.5: TX shift register preload rules

CAN frame fields in which TX shift register is Preloaded bit sequence Where the bit sequence is preloaded

preloaded from

SOF, suspend transmission, intermission, idle Base identifier Identifier capture register in TX
Arbitrator.

IDE bit Identifier extension Identifier capture register in TX
Arbitrator.

r0 bit of CAN 2.0 frame with identifier Data length code Metadata capture registers in TX

extension, EDL/r0 bit. ESI bit Arbitrator.

Last bit of data length code, in data field when | Data word (4 bytes) for TXT buffer RAM data output on

multiple of 32 bits of data field were transmission. Port B.

transmitted.

Last bit of data length code in ISO CAN FD Stuff count and stuff Counter of stuffed bits in Bit

frames without data field, in last bit of data parity. Stuffing module.

field in ISO CAN FD frames.

Last bit of stuff count, last bit of data field in Calculated CRC. CRC calculation register in CAN

non-ISO CAN FD frames (no stuff-count), last CRC module.

bit of data length code in non-ISO CAN frames

with no data field.

Table 4.6: TX Shift register - special cases

Bit value transmitted Special conditon

Dominant Error frame request - unit is error active

Recessive Error frame request - unit is error passive

Dominant Protocol control FSM requests transmission of
dominant bit

Recessive TX shift register is disabled and none of the above
conditions apply. This situation corresponds to
transmission of continuous stream of recessive bits.

32

4. SUB-BLOCKS ARCHITECTURE

528 CTU CAN FD IP Core - System Architecture
/i:fg Version 0.21, Commit:5d16182, 2026-02-01

Table 4.7: TX shift register - example of operation

CAN Frame: Base identifier: 0x123
DLC: 0x1
Data: OxAB
Frame Type: CAN FD Frame
Identifier Type: Base Identifier
Bit on CAN bus TX Shift Register status,
left-most bit transmitted on output of Protocol Control,
transmitted sequence boldom
SOF 00000000 00000000 00000000 00000000
Base ID - Bit 1 00100100 01100000 00000000 00000000 (Base ID: 0x123: 00100100011)
Base ID - Bit 2 01001000 11000000 00000000 00000000
Base ID - Bit 3 10010001 10000000 00000000 00000000
Base ID - Bit 4 00100011 00000000 00000000 00000000
Base ID - Bit 5 01000110 00000000 00000000 00000000
Base ID - Bit 6 10001100 00000000 00000000 00000000
Base ID - Bit 7 00011000 00000000 00000000 00000000
Base ID - Bit 8 00110000 00000000 00000000 00000000
Base ID - Bit 9 01100000 00000000 00000000 00000000
Base ID - Bit 10 11000000 00000000 00000000 00000000
Base ID - Bit 11 10000000 00000000 00000000 00000000
RTR 00000000 00000000 00000000 00000000
IDE 00000000 00000000 00000000 00000000
r0 00000000 00000000 00000000 00000000
DLC - Bit1 00010000 00000000 00000000 00000000 (DLC: 0x1 0001)
DLC - Bit 2 00100000 00000000 00000000 00000000
DLC - Bit 3 01000000 00000000 00000000 00000000
DLC - Bit 4 10000000 00000000 00000000 00000000
Data - Bit 1 10101011 00000000 00000000 00000000 (Data: 0xAB 10101011)
Data - Bit 2 01010110 00000000 00000000 00000000
Data - Bit 3 10101100 00000000 00000000 00000000
Data - Bit 4 01011000 00000000 00000000 00000000
Data - Bit 5 10110000 00000000 00000000 00000000
Data - Bit 6 01100000 00000000 00000000 00000000
Data - Bit 7 11000000 00000000 00000000 00000000
Data - Bit 8 10000000 00000000 00000000 00000000

33

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
JXFS Version 021, Commit:5d16182, 2026-0-01

RX shift register
File: rx_shift reg.vhd

RX shift register is 32 bit shift register which receives bit sequence and stores parts of this sequence to dedicated capture
registers. RX shift register operates in two basic modes as is described in Table 4.8. Mode of RX shift register determines
whether input of each byte in shift register is taken from output of previous byte, or directly from input of RX shift
register. Diagram of RX shift register is shown in Figure 4.9. Shifting of each byte of RX shift register is enabled
separately and it is controlled by Protocol control FSM. RX Shift register is shifting during multi-bit fields on CAN bus
and it shifts by one position each bit in Process pipeline stage. This corresponds to reception of bit from CAN bus. RX
shift register shifts up. RX shift register stores part of its content to either a dedicated capture register, or RX buffer
memory as described in Table 4.9. Received CRC sequence is not stored into any capture register and it is used for
CRC check directly from RX shift register (CRC frame field is the last field of CAN frame which is shifted into RX shift
register, therefore after CRC frame field, CRC remains in RX shift register).

RX shift register is not used till the end of frame and its content remains stable. Other one bit metadata information
are stored to dedicated capture registers directly from input of RX shift register in corresponding fields of CAN frame as
described in Table 4.10. An example of RX shift register operation is shown in 4.11

Table 4.8: RX shift register modes

RX Shift Bit fields on CAN bus Byte which is enabled. | Description

register when mode is used.
mode
Linear Base identifier, All bytes are enabled. Shift register forms single 32-bit shift register.
mode identifier extension, Inputs of each next byte are connected to
DLC, CRC sequence, outputs of previous byte. All bits are shifted
Stuff count simultaneously.
Byte mode | Data field Only one byte is Shift register forms 4 separate 8-bit shift
enabled at any time. registers. Inputs of each byte are connected to
Enabled byte is given input of RX shift register. Only 1 shift register
by index of actually (one byte) is shifted at any time.

received data field
byte on CAN bus.

Table 4.9: RX shift register - stored sequences

Bit on CAN bus in which Meaning of stored sequence Destination where value is stored.
RX shift register stores part of its
content.
Last bit of base identifier Base identifier Capture register.
Last bit of identifier extension Extended identifier Capture register.
Last bit of data length code Data length code Capture register.
Last bit of data field or last bit of 4 bytes (single memory word) of RX buffer RAM memory.
memory word within data field (after | data field.
each 32 bits).
Last bit of stuff count Grey coded stuff count + stuff Capture register.
parity

34

R

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

Table 4.10: RX shift register - stored single bits

Protocol control FSM
state

Meaning of stored bit

Corresponding
metadata signal

Destination where value
is stored.

BRS Value of bit rate switch bit BRS Capture register
ESI Value of error state indicator bit ESI Capture register
IDE Value of identifier extension bit ID_TYPE Capture register
RTR/SRR/R1, Value of remote transmission RTR Capture register
RTR/R1 request Bit

EDL/RO, EDL/R1 Value of extended data length / FR_TYPE Capture register

flexbile data-rate format bit

Input

Selection | rx_shift_reg

(Mode)
RLSEEY S —>>_|—> D a D a D

cos [I1) 208 p i p
Enables Sl Sl shift shift
(separate register register register register
for each CE Status CE Status CE Status CE Status

o) || 4] P P f

I ! !

RX CRC,
RX Data word‘

RX'ID

»

A 4

Capture . etadata
Conto Capture registers S
ignals

Y

RX Stuff CounE

Figure 4.9: RX shift register - Block diagram

35

&a;;g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/i:f Version 0.21, Commit:5d16182, 2026-02-01

Table 4.11: RX shift register operation

CAN Frame: Base ID: 0x123
DLC: 0x2
Data: 0xAB 0xCD
Frame Type: CAN FD Frame
Identifier Type: Base Identifier
Bit on CAN bus Mode RX shift Register status,
right most bit is received on input of Protocol control,
received sequence boldom
SOF - 00000000 00000000 00000000 00000000
Base ID - Bit 1 Linear 00000000 00000000 00000000 00000000
Base ID - Bit 2 Linear 00000000 00000000 00000000 00000000
Base ID - Bit 3 Linear 00000000 00000000 00000000 00000001
Base ID - Bit 4 Linear 00000000 00000000 00000000 00000010
Base ID - Bit 5 Linear 00000000 00000000 00000000 00000100
Base ID - Bit 6 Linear 00000000 00000000 00000000 00001001
Base ID - Bit 7 Linear 00000000 00000000 00000000 00010010
Base ID - Bit 8 Linear 00000000 00000000 00000000 00100100
Base ID - Bit 9 Linear 00000000 00000000 00000000 01001000
Base ID - Bit 10 Linear 00000000 00000000 00000000 10010001
Base ID - Bit 11 Linear 00000000 00000000 00000001 00100011 (Base ID: 0x123:
00100100011)
RTR - 00000000 00000000 00000001 00100011
IDE - 00000000 00000000 00000001 00100011
r0 - 00000000 00000000 00000001 00100011
DLC-Bit1 Linear 00000000 00000000 00000010 01000110
DLC - Bit 2 Linear 00000000 00000000 00000100 10001100
DLC - Bit 3 Linear 00000000 00000000 00001001 00011001
DLC - Bit 4 Linear 00000000 00000000 00010010 00110010 (DLC: 0x2 0010)
Data Byte 0 - Bit 1 Byte 00000000 00000000 00010010 00110011
Data Byte 0 - Bit 2 Byte 00000000 00000000 00010010 00110010
Data Byte 0 - Bit 3 Byte 00000000 00000000 00010010 00110101
Data Byte 0 - Bit 4 Byte 00000000 00000000 00010010 00111010
Data Byte 0 - Bit 5 Byte 00000000 00000000 00010010 00110101
Data Byte 0 - Bit 6 Byte 00000000 00000000 00010010 00101010
Data Byte 0 - Bit 7 Byte 00000000 00000000 00010010 01010101
Data Byte 0 - Bit 8 Byte 00000000 00000000 00010010 10101011 (Data: 0xAB 10101011)
Data Byte 1- Bit 1 Byte 0000000 00000000 00010011 10101011
Data Byte 1- Bit 2 Byte 0000000 00000000 00010011 10101011
Data Byte 1- Bit 3 Byte 0000000 00000000 00010110 10101011
Data Byte 1- Bit 4 Byte 0000000 00000000 00011100 10101011
Data Byte 1- Bit 5 Byte 0000000 00000000 00011001 10101011
Data Byte 1- Bit 6 Byte 0000000 00000000 00110011 10101011
Data Byte 1- Bit 7 Byte 0000000 00000000 01100110 10101011
Data Byte 1- Bit 8 Byte 0000000 00000000 11001101 10101011 (Data: 0xCD 1100 1101)

36

f&ggg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/rf Version 0.21, Commit:5d16182, 2026-02-01

Error detector

File: err_detector.vhd

Error detector processes errors detected by other modules, decides whether these errors are valid, and generates error frame
request to Protocol control FSM. Errors are detected in Process pipeline stage, and error frame request is provided to
Protocol control FSM one clock cycle after Process pipeline stage. Error frame request is registered to avoid combinatorial
loops between Error detector and Protocol control FSM. Error types and modules of their origin are described in Table
4.12. Error detector containts Error code capture register which stores type and position of last error. Error code capture
register is loaded when Error detector creates error frame request to Protocol control FSM. Reffer to [2] for description
of Error code capture register. An example of error detection (form error) with details of actions in each pipeline stage
is shown in Figure 4.10.

Table 4.12: Error detection rules (part 1)

tEyrp:Zr C.AN frame | CAN Frame Module Description
fields when | Fields where where
error is Error can't occur | error is
detected detected
Bit SOF, Can occur Bit error Bit error is detected when transmitted and received value
er- control, anywhere detector of bit on CAN bus differs. Reffer to 4.8 for details of bit
ror data, stuff in Bus error detection by Bus sampling module. Bit error
count, sampling | detection by Bus sampling module is enabled always, it is
CRC, CRC module only ignored in bit fields as described in 4.16.
delimiter
Arbitration | Can occur Protocol | In arbitration field, bit error detected by Bus sampling is
field anywhere control ignored by Error detector. Instead bit error detected by
FSM Protocol control FSM is considered. Protocol control
FSM detects bit error during arbitration field only when
transmitted bit was dominant and received bit is
recessive.
S:rlj)frf Arbitration Intermission, idle, | Bit Stuff error is detected .by Bit destuffing module as
field, suspend, error destuff- described in 4.1.5. If fixed stuff bit does not have oposite
control, frame, overload ing value as previous bit, this error is detected as stuff error
data, stuff frame, end of module by Bit destuffing module, but error is stored as form error
count, CRC | frame, CRC in Error code capture register.
delimiter, ACK,
ACK delimiter
E:rrc:: SOF, Arbitration, data Protocol | Form error is detected by Pro_tocol Contrql FSM by
control, field, ACK, control checking received bit during fixed frame fields as
stuff count, | intermission, FSM, Bit | described in 4.14. Protocol control signals form error to
CRC, EOF suspend destuff- Error detector and based on this, Error frame request is
transmission ing signalled one clock cycle after Process pipeline stage.
module
for fixed
stuff bits.

37

f&.%gg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/rf Version 0.21, Commit:5d16182, 2026-02-01

Table 4.13: Error detection rules (part 2)

ELie CAN frame | CAN frame fields | Module Description
type -)
fields when | where error can’t | where
error is occur. error is
detected. detected
S?fr ACK SOF, Arbitration, | Protocol Comparison of RX CRC with c:alculated CRC is executed
delimiter Control, Data, control in Error detector. After CRC field has passed, RX shift
Stuff Count, FSM register is not shifting, and CRC module is not
CRC, CRC calculating CRC anymore, therefore comparison shows
Delimiter, ACK, valid result from CRC delimiter further. Based on result
End of Frame, of comparison “CRC match” is signalled to Protocol
Intermission, Bus control FSM. If unit is receiver and “CRC match” is not
idle, Error frame, signalled to Protocol control FSM in ACK delimiter,
Overload frame Protocol control FSM detects CRC error (in Process
pipeline stage of ACK delimiter) and propagates it back
to Error detector. Error detector generates Error frame
request for Protocol control FSM. An example of CRC
check mechanism and detection of CRC error is shown in
Figure 4.11.
eAr(r:cti ACK SOF, Arbitration, | Protocol ACK error is detected by Protocol control FSM when unit
Control, Data, control is transmitter, recessive bit is received, and unit is not in
Stuff Count, FSM Self test mode (frame valid also without ACK dominant).
CRC, CRC
Delimiter, ACK
Delimiter, End of
Frame,
Intermission, Bus
idle, Error frame,
Overload frame
Table 4.14: Form error detection
CAN frame field Condition
SOF If recessive bit is received, form error is detected.

r0 bit after EDL/r1 bit in frame
with extended identifier or rO bit in | If recessive bit is received, form error is detected when SETTINGS[PEX] =
CAN FD frames '0". Recessive bit would mean extending beyond CAN FD standard. When
SETTINGS[PEX] = '1", form error is not detected and CTU CAN FD
enters integration.

CRC delimiter, ACK delimiter If dominant bit is received, form error is detected.

EOF If dominant bit is detected at all but last bit of EOF, form Error is
detected. At last bit dominant bit means Error frame only for transmitter.
For receiver, it means Overload condition.

All but last bit of error delimiter and

. If dominant bit is received, form error is detected.
overload delimiter

38

fe

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

Table 4.16: Bit error by Bus sampling module exceptions

Frame Field/

Protocol control Description

FSM state

SOF Dominant bit is transmitted. Bit error would be detected when recessive value was received.

Such a situation is treated as form error, and bit error is ignored.

bus integration,
reintegration

Recessive value is transmitted, receiving dominant is not detected as bit error since these
might represent a frame between other units while CTU CAN FD is integrating.

arbitration field

Bit error is detected by Protocol control FSM, thus bit error detected by Bus sampling
module is ignored.

Control, data,
stuff count, CRC

Bit error detected by Bus sampling module is ignored if unit is receiver. Receiver in these
fields transmitts only recessive bits and reception of dominant bit is not treated as bit error
since unit is receiving data from other transmitter.

CRC delimiter Receiving dominant bit during is interpreted as form error, due to this reason bit error
detected by Bus sampling module is ignored.

ACK Bit error is ignored, as is defined in [1].

ACK delimiter During ACK delimiter, recessive value is transmitted and reception of dominant value is
considered as form error. Due to this reason bit error is ignored.

EOF Reception of dominant bit during EOF is treated as form error due to this bit error is ignored.

Intermission Recessive value is sent to the bus. Receiving dominant bit during first or second bit of
intermission is interpreted as overload frame. Receiving dominant bit during third bit of
intermission is interpreted as SOF of next frame. Due to these reasons, bit error during
intermission is ignored.

Suspend

transmission, idle

Recessive value is sent to the bus. Receiving dominant bit is interpreted as SOF of next
frame. Due to this reason bit error during suspend transmission and idle is ignored.

Reintegration
wait

When unit turned bus-off, it is de-facto off the bus, It shall not transmitt anything unless it
re-intagrates. Due to this reason bit error is ignored.

Passive error flag

Detecting dominant bit during passive error flag is not interpreted as bit error since it is
defined like so in [1].

Error delimiter,
Overload
delimiter

Recessive bit is sent to the bus. Receiving dominant bit is interpreted as form error. Due to
this bit error is ignored.

systemeosk T\ S T fL T N T
CAN Bus field End bf frame // Active Error Flag
Pipeline stage 777/ Destutt_| Process fProcess + W7/, 4%%(Stuff
Form Error —\ //
Error frame request /—\ I //
Protocol control FSM End of Frame X J/i Active Error Flag
RX Data /[
TX Data b J/ !

Sample point Start of next bit

Figure 4.10: Error detection example (form error)

39

/c%fi% CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE

Version 0.21, Commit:5d16182, 2026-02-01

Protocol Control

FSM

Frame
Progress Error Detector crc Match = ‘07, signals mismatch
between received CRC and
CRC Match calculated CRC or received Stuff Count
CRC Delimiter calculation and calculated stuff count _
ACK Slot
Protocol control signals CRC Error
ACK Delimiter P (Process pipeline Stage)
al
Error Code Capture Error Detector signals Error Frame request -
is updated v

First bit of Error Flag

Figure 4.11: CRC check and CRC error signalling

4.1.2 Operation control

File: operation control.vhd

Operation control implements Operational state of CTU CAN FD node (transmitter, receiver, idle). Operation control
contains an FSM whose state transition diagram is shown in Figure 4.12. It is controlled by Protocol control FSM and

Protocol control FSM

commands TX Shift

register to transmitt
recessive ACK

Protocol control FSM
starts Error Flag

Protocol control FSM
Transmitts Dominant
or Recessive based
on type of Error Flag

Fault confinement FSM. Rules for control of Operation control FSM are described in Table 4.17.

Set Idle

Set
Transmitter

Set
Transmitter

SETTINGS[ENA] ='0'
or unit is Bus-off

Set

Receiver .
Receiver

Set Idle

Arbitration Lost,
Set Receiver

Legend:
Progress

Figure 4.12: Operation control FSM

40

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

Table 4.17: Operation control FSM - state transitions

Actual state

Next state Description

Off Idle When unit is turned on (SETTINGS[ENA]="1"), unit integrates to the bus
communication. After integration is finished (11 consecutive recessive bits received),
Protocol control signals set idle. Unit becomes idle.

Idle Transmitter | Unit is idle and in sample point TX arbitrator signals available frame for
transmission, Protocol control FSM locks Validated TXT buffer (reffer to 4.39),
Protocol control signals set transmitter and unit becomes transmitter of frame
from Validated TXT buffer.

Idle Receiver Unit is idle, there is no available frame for transmission signalled by TX arbitrator.
Dominant bit is sampled, Protocol control FSM signals set receiver and unit
becomes receiver of next frame.

Transmitter Receiver Unit transmi.tts frar.ne. In last Pit of in.terrnission field, unit is still transmitt.er, unit

due detects dominant bit and considers this bit as SOF (reffer to [1]). If there is no
to available frame for transmission signalled by TX arbitrator, Protocol control FSM

set_receiver

signals set receiver and unit becomes receiver of following frame.

Unit is error passive and it transmitts a frame. It enters suspend transmission. If
during suspend transmission, dominant bit is detected, Protocol control FSM issues
set receiver and unit becomes receiver of next frame.

Transmitter | Receiver If during arbitration field recessive bit is sent on the bus, but dominant bit is
due to monitored by Protocol control FSM, arbitration_ lost is signalled and unit becomes
arbitra- receiver.
tion lost

Transmitter | Idle Unit transmitts a frame. In last bit of intermission, recessive bit is detected (no other

unit is attempting to transmitt frame) and there is no available frame for
transmission signalled by TX arbitrator. Protocol control FSM issues set idle
command and unit becomes idle.

Receiver Transmitter | Unit receives a frame. In last bit of intermission, available frame for transmission is
signalled by TX arbitrator. Protocol control FSM signals set_ transmitter and unit
becomes transmitter of frame from Validated TXT buffer.

Receiver Idle Unit receives a frame. In last bit of intermission, there is no available frame for
transmission signalled by TX arbitrator, recessive bit is monitored (no other unit is
attempting to transmitt frame), then Protocol control FSM issues set idle
command and unit becomes idle.

Idle, Trans-

mitter, Off Fault confinement FSM signals that unit is bus-off or unit is disabled

Receiver (SETTINGS[ENA] = '0"). In next sample point, unit becomes “Off".

41

4. SUB-BLOCKS ARCHITECTURE

s%?/;g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

4.1.3 Fault confinement

File: fault confinement.vhd

Fault confinement module implements following functionality:

e Transmitt error counter (TEC)/ receive error counters (REC) according to [1].
e Rules for manipulation of TEC and REC.
e Fault confinement state of node (error active, error passive, bus-off).

e Set of special error counters to distuinguish between errors in nominal bit rate and data bit rate.

Fault confinement block diagram is shown in Figure 4.13.

fault_confinement
_IsError Active
: s Error Passive fault_confinement_fsm Data
P Is Bus-off _ Error counter _
Fault conf. " Nominal -
__ State changed _ Error counter .
Error Warning _TEC _
_ Limit Reached REC -
A
EWL 4 err_counters
ERP
Test access _
A 4 4 A4
;ault fault_confinement_rules | Incrementby 1
Confinement Increment by 8
Interface
I Decrement by 1
Reset counters

Figure 4.13: Fault confinement block diagram

TEC and REC counters are controlled by Protocol control FSM via as described in 12.1.3.3 of [1]. Detection of special
conditions stated in 12.1.4.2 of [1] is implemented in Fault confinement rules module. Error counters module implements
counters as described in Table 4.18. Each counter can be modified from Memory registers via CTR _PRES register
when CTU CAN FD is in Test mode (MODE[TSTM] = '1"). Fault confinement state as defined in 12.1.4.1 of [1] is
implemented by Fault confinement FSM. State transition diagram of Fault confinement FSM is shown in Figure 4.14.
Threshold for Error warning limit detection (EWL) and transition to error passive (ERP) can be configured from Memory
registers when device is in Test mode (MODE[TSTM] = '1"). Transition from bus-off to error active is performed after

42

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

reintegration (set_err_active is signalled by Protocol control FSM). Reffer to 4.1.1 for description of Reintegration

counter operation.

TEC >= ERP TEC < ERP Set Error
or .
and Active
REC >= ERP REC < ERP
v
Error
Passive TEC > 255 Bus-off

Figure 4.14: Fault confinement FSM

Table 4.18: Error counters

Counter
Name CAN FD Description
standard
name
Receive
error REC Incremented, decremented as described in 12.1.4.2 of [1].
counter
Transmitt
error TEC Incremented, decremented as described in 12.1.4.2 of [1].
counter
Nominal
error - Incremented by 1 for each error detected during nominal bit rate. No influence on
counter fault confinement state of CTU CAN FD.
Data error . . .
counter - Incrgmented by 1 for each error detected during data bit rate. No influence on fault
confinement state of CTU CAN FD.

4.1.4 Bit stuffing

File: bit_stuffing.vhd

Bit stuffing module implements following functionality:

e Inserts stuff bits to data transmitted by Protocol control (regular and fixed stuff bits).

e Halts CAN core for one bit time when stuff bit is inserted.

e Counts number of stuff bits modulo 8 for transmission of stuff count field.

e Inserts stuff bit in the beginning of stuff count field or CRC field of CAN FD Frame.

43

4. SUB-BLOCKS ARCHITECTURE

sx.ag CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Bit stuffing module processes data transmitted by Protocol control in Stuff pipeline stage. Bit stuffing module operates
in two modes as described in 4.19. When Bit stuffing is enabled, it inserts bit of opposite polarity to transmitted bit
stream based on Bit stuffing mode. Data are processed by Bit stuffing module with one clock cycle delay (output is
registered). When Bit stuffing module is disabled, it propagates data from input to output without inserting stuff bits ,
but still with one clock cycle delay. Input data are processed in Stuff pipeline stage regardless of the fact if Bit stuffing
module is enabled or disabled (Input is not combinatorially bypassed when Bit stuffing module is disabled). Bit stuffing
module is enabled only when unit is transmitter of CAN Frame. When unit is receiver, Bit stuffing module is disabled
and only propagates recessive bit values from input to output. Bit stuffing module counts number of inserted stuff bits in
Regular Bit stuffing mode in counter of stuff bits (this counter is then used in stuff count frame field). A basic sequence
of Bit stuffing module operation is described in Table 4.20.

When bus is idle and transmission of frame starts, SOF bit is the first bit which is processed by Bit stuffing module. If
unit samples dominant bit during third bit of intermission, bus idle or suspend transmission, this bit is considered as SOF
bit (see 10.4.2.2 of [1]). Such bit is counted as first dominant bit by Bit stuffing module. Bit stuffing module is disabled
when unit reaches CRC delimiter frame field. Bit stuffing module is not disabled in last bit of CRC sequence so that
stuff bit can be inserted behind the last bit of CRC sequence. When CTU CAN FD loses arbitration (turns receiver), Bit
stuffing module is disabled. An example of Bit stuffing module operation during whole frame is shown in Figure 4.15. If
an error is detected (error frame is requested by Error detector), Bit stuffing module is disabled. Bit stuffing module is
enabled only during fields which shall be coded by bit stuffing as described in [1].

Table 4.19: Bit stuffing modes

Bit stuffing | Stuff rule
mode length Description

Regular 5 When 5 consecutive bits of equal value are processed, bit of opposite value is
inserted. Inserted stuff bit counts as first bit of next sequence of 5 equal consecutive
bits (bit stuffing is recursive).

Fixed 4 When 4 bits are processed (regardless of their value), a bit of opposite value than
last bit of these 4 bits is inserted on output of Bit stuffing module.

44

%ﬁé CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

Table 4.20: Bit stuffing module operation

Step Action

1 Bit stuffing module is disabled, there is no transmission / reception in progress by CTU CAN FD. Counter
of equal consecutive bits is 1. Bit stuffing module only propagates recessive value to output in Stuff
pipeline stage.

2 Transmission starts (unit becomes transmitter), Bit stuffing module is enabled. Length of Stuff rule is
configured to 5 by Protocol control FSM.
3 Bit stuffing module processes bits from Protocol control in Stuff pipeline stage. Counter of equal

consecutive bits is incremented by 1 for each processed bit of equal polarity (with respect to previous bit).
When bit of opposite polarity is processed, counter of equal consecutive bits is set to 1.

4 Counter of equal consecutive bits reaches length of Stuff rule. Instead of propagating processed bit to
output, Bit stuffing inserts bit of opposite polarity on output. Bit stuffing module halts to Protocol
control. Protocol control remains halted for one bit. Counter of stuff bits is incremented by 1.

5 After one bit time for which Protocol control was halted, it continues in transmission. Bit stuffing module
continues in processing data transmitted by Protocol control. Counter of equal consecutive bits is
incremented after insertion of stuff bit to account for recursive behaviour of bit stuffing.

6 CAN FD Frame advances to last bit of frame field preceding stuff count frame field. Bit stuffing mode is
changed to Fixed. Length of Bit stuffing rule is configured to 4.

7 Stuff bit is inserted by Bit stuffing module in the first bit which is processed in Fixed Bit stuffing mode
(First bit of stuff count frame field).

8 Counter of equal consecutive bits is incremented with each processed bit regardless of previous processed

bit value. Stuff bit is inserted after each 4 processed bits.

Frame Protocol Control

Progress FSM Bit Stuffing
TX Frame is signalled by TX Arbitrator,
Bus Idle i i
Protocol control FSM enables Bit Stuffing »| Bt Stuffing is enabled
SOF

First bit processed by Bit Stuffing

Next bits during CAN frame

Bits processed by Bit Stuffing.

i Repeated for each
Protocol Control remains Counter of equal consecutive bits

halted for one Bit time. TX |« Data Halt” is signalled to Protocol control reaches 5, Stuff Bit is inserted, sequence of 5
. < . .
Shift register is not shifted. Stuff Counter is incremented consecutive bits of
Protocol control continues transmitting equal polarity

after one bit time

\4

Bit Stuffing processes next bits

End of Frame field Protocol control FSM changes

before Stuff Count Bit Stuffing mode to Fixed Stuffing Bit Stuffing mode s Fixed Stuffing

A 4

“Data Halt” is signalled to Protocol control due
First bit of Stuff Count to first processed bit by Fixed Stuffing

A

Protocol control continues transmitting
after one bit time

“Data Halt” is signalled to Protocol control
< Stuff bit is inserted after each 4 bits

CRC Delimiter Protocol control disables Bit Stuffing | Bit Stuffing is disabled, rest of the frame is

transmitted without insertion of Stuff Bits

\/

Figure 4.15: Bit stuffing detailed operation

45

sx.ag CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

4.1.5 Bit destuffing
File: bit_destuffing.vhd
Bit destuffing module implements following functionality:

e Discards stuff bits from received data on CAN bus (regular and fixed stuff bits).

Halts CAN core for one bit time when stuff bit is discarded.

e Counts number of de-stuffed bits modulo 8 for comparison with received stuff count frame field.

Discards first fixed stuff bit of CAN FD Frame.

Detects stuff error.

Bit destuffing module processes received data on CAN bus as provided by multiplexor in Figure 4.1 in Destuff pipeline
stage. Bit destuffing module operates in two modes as described in Table 4.21. Bit destuffing module discards stuff bits
according to current Bit destuffing mode. Discarded stuff bit is signalled to Protocol control and it is ignored by Protocol
control (not shifted to RX shift register, does not affect Protocol control FSM). Input data are processed with one clock
cycle delay (output is registered). When Bit destuffing module is disabled, it only propagates input data to output in
Destuff pipeline stage without discarding any bit or detecting stuff error. Bit destuffing module is enabled when unit is
transmitter or receiver since transmitter also receives bits transmitted by itself. Bit destuffing module contains counter
of discarded stuff bits in Regular mode. This counter is compared with received stuff count field as part of CRC check
in CAN FD frames. A basic sequence of operation is shown in Figure 4.22,

When bus is idle, unit is in suspend transmission or third bit of intermission, Bit destuffing module processes dominant
bit (which is subsequently evaluated as SOF by Protocol control FSM), then Bit destuffing module considers this bit as
first bit in sequence of equal consecutive bits. Bit destuffing module is disabled when unit reaches CRC delimiter frame
field. Bit destuffing module is not disabled in last bit of CRC sequence so that stuff bit can be discarded behind the last
bit of CRC sequence. When transmission of error frame is requested, Bit destuffing module is disabled. Bit destuffing
module is enabled only during fields which shall be coded by bit stuffing as described in [1].

Table 4.21: Bit destuffing modes

£l . Destuff rule

el i length Descripti

Mode & ption

Regular 5 When 5 consecutive bits of equal polarity are processed, next bit is discarded. If
value of discarded bit is equal to previous bit, stuff error is detected.

Fixed 4 When 4 bits are processed next bit is discarded, next bit is discarded regardless of
values of previous processed bits. If value of discarded bit is equal to previous bit,
stuff error is detected.

46

s%?/g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

Table 4.22: Bit destuffing module operation

Step Action

1 Bit destuffing module is disabled, there is no transmission / reception in progress by CTU CAN FD.
Counter of equal consecutive bits is 1. Bit destuffing module only propagates recessive value to output in
Destuff pipeline stage.

2 Transmission or reception of frame starts (unit becomes receiver), Bit destuffing module is enabled.
Destuff rule length is configured to 5 by Protocol control FSM.
3 Bit destuffing module processes bits in Destuff pipeline stage. Counter of equal consecutive bits is

incremented by 1 for each processed bit of equal polarity (with respect to previous bit). When bit of
opposite polarity is processed, Counter of equal consecutive bits is set to 1.

4 Counter of equal consecutive bits reaches length of Stuff rule. Following bit is discarded (not processed)
and signalled to Protocol control FSM as “Destuffed”. Protocol control ignores such a bit and its
processing of received data remains halted for one bit time. Number of discarded stuff bits (counter of
discarded stuff bits) is incremented by 1.

5 After one bit time for which Protocol control was halted, Bit stuffing module processes next bit. This bit
is also processed by Protocol control. Counter of equal consecutive bits is incremented after discarding
stuff bit to account for “recursive” behaviour of bit destuffing.

8 CAN FD Frame advances to the end of frame field preceding stuff count frame field. Bit destuffing mode
is changed to Fixed. Destuff rule length is configured to 4.

9 Stuff bit is discarded by Bit destuffing module in the first bit which is processed in Fixed Bit Stuffing
mode (first bit of stuff count frame field).

10 Counter of equal consecutive bits is incremented with each processed bit regardless of previous processed

bit value. Stuff bit is discarded after each 4 processed bits.

416 CAN CRC

File: can_crc.vhd

CAN CRC implements following functionality:

e Calculates CRC sequences according to [1] (for ISO CAN FD) and according to [6] (for non-ISO CAN FD).

e Chooses appropriate input and trigger for calculation of CRC sequence.

Block diagram of CAN CRC is shown in Figure 4.16.

47

s%%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

can_crc
TX Data -

(No Bit Stuffing) Is transmitter
RX Data “| \ Datainput
crc_calc (CRC 15) CRC 15

(No Bit Stuffing)

TX Trigger
(No Bit Stuffing) \ 4
RX Trigger Trigger CRC Enable

(No Bit Stuffing)

A

\4
A

\ 4

A

> " |cre Speculative
TX Data
. .) Enable
(With Bit Stuffing) |
RX Data v Data input | crc_calc (CRC 17) CRC 17
(With Bit Stuffing) | "
TX Trigger
(With Bit Stuffing)| cre_calc (CRC 21) CRC21
RX Trigger ”
(With Bit Stuffing) > Trigger

Figure 4.16: CAN CRC block diagram

CAN CRC contains 3 CRC calculation modules (CRC 15, CRC_17, CRC_21). CRC _15 is calculated from data
without stuff bits. CRC_17 and CRC_ 21 are calculated from data with stuff bits inserted. CRC register is preloaded to
CRC_INIT _VECTOR upon enabling of CRC calculation (before first bit is processed). When a CRC calculation module
is enabled, next step of CRC calculation is executed every bit of CAN frame. A pseudo-code for CRC calculation is shown
in [1].

Data input to CRC calculation is different based on part of the CAN frame where CRC calculation is executed and oper-
ational state of CTU CAN FD. During arbitration field, or when speculative enable is used (during bus idle, intermission
or suspend transmission), CRC is calculated from received data as there can be multiple units transmitting on the bus
at once, and correct value (when bus has settled in sample point) must be used for calculation. After arbitration field
, transmitter calculates CRC from transmitted data, and receivers calculate CRC from received data. Calculation step
from transmitted data is shown in Figure 4.17 and from received data is shown in 4.18.

After arbitration field, source of data for CRC calculation changes from transmitted to received data. Pipeline stage
when next step of CRC calculation is executed differs based on source of input data (if received data are used, input
data are not valid before sample point) as described in Table 4.23. When CRC_17/CRC_ 21 execute CRC calculation
step from stuffed/destuffed bit, CRC 15 remains unchagned (according trigger signal is gated). CRC calculation step
can be enabled by means of two enable signals: Regular enable and Speculative enable. Meaning of these two signals is
explained in Table 4.24.

48

fe

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

System clock

CAN Bus bit

Pipeline stage

Data Halt

CRC15

CRC15 trigger

CRC17 / CRC21
CRC17 / CRC21 trigger

System clock

CAN Bus bit

Pipeline stage
Destuffed bit

CRC15

CRC15 trigger

CRC17 / CRC21
CRC17 / CRC21 trigger

LN A W N A N A I A N S N A Y A
Bit N Bit N + 1 J/i Bit N + 1 BitN + 2
77X Stuft Stuff + 1 X7 A7 sttt Stuff + 1 X7
|
Bit N / Bit N + 1
[I
Bit N X /| BitN+1 X BitN+2
P \ I h \
Start of bit N + 1 Start of bit N + 2 (Stuff bit)
Figure 4.17: CRC calculation - TX Data stream
[N A N S NV A N O A Y A\ V- WY A W A
Bit N X Bit N + 1
7/X_Destuft | Process ¥/ ,777/X Destuft) Process X/
I
Bit N - 1 X / Bit N
\ I
Bit N - 1 X J/i Bit N X BitN+1
P \ I h \

Sample point of Bit N

Sample point of Bit N + 1 (Stuff Bit)

Figure 4.18: CRC calculation - RX Data stream

Table 4.23: CAN CRC calculation

gigule Data Data input for CRC calculation Pipeline stage when calculation
stream step is executed
CRC 15 TX Transmitted data on output of Protocol control. Stuff
- RX Received data on input of Protocol control. Process
TX Transmitted data on output of Bit stuffing Stuff + 1 clock cycle
CRC 17
- module.
RX Received data on input of Bit destuffing module. Process
TX Transmitted data on output of Bit stuffing Stuff 4+ 1 clock cycle
CRC 21
- module.
RX Received data on input of Bit destuffing module. Process

49

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
JXFS Version 021, Commit:5d16182, 2026-0-01

Table 4.24: CAN CRC enable signals

CAN CRC Enable | Description

signal

Regular enable When CRC module is enabled by regular enable signal, it executes next step of calculation in
according pipeline stage regardless of input data value to be processed. This enable signal is
used during CAN frame fields from SOF until end of data field.

Speculative When CRC module is enabled by speculative enable signal, it executes next step of calculation

enable in according pipeline stage only when input data value to be processed is dominant (logic 0)

and recessive value is ignored. Speculative enable is used in suspend transmission, last bit of
intermission and bus idle when dominant value is sampled and this value is interpreted as SOF
by Protocol control (as this bit needs to be already taken into account for CRC calculation).

4.1.7 Trigger multiplexor

File: trigger mux.vhd

Trigger multiplexor creates trigger signals for other blocks within CAN core from trigger signals generated by Prescaler
as described in Table 4.25. See 4.7.7 on how are trigger signals generated by Prescaler.

Table 4.25: Trigger signals

Trigger Pipeline

Name stage Description

Protocol

control TX | Stuff Used to shift TX shift register in Protocol control. Gated when there is stuff bit

Trigger inserted, this corresponds to halting Protocol control for 1 bit time as described in
Table 4.20

Protocol

control RX | Process Used to shift RX shift register in Protocol control, update of Protocol control FSM

Trigger state, manipulation of Control counter and Retransmitt Counter. Gated when stuff
bit is discarded, this corresponds to halting Protocol control for 1 bit time as
described in Table 4.22.

Bit Stuffing . . .

. Stuff Used to process transmitted data by Bit stuffing module.

Trigger

Bit

Destuffing Destuff Used to process received data by Bit destuffing module.

Trigger

CRC TX Stuff + 1

WBS Used to enable CRC calculation step for CRC_17 / CRC_ 21 when CRC calculation

. clock cycle . .

Trigger step is executed from transmitted data.

CRCTX

NBS Stuff Used to enable CRC calculation step for CRC 15 when CRC calculation step is

Trigger executed from transmitted data.

CRC RX

WBS Process Used to enable CRC calculation step for CRC 17 / CRC 21 when CRC calculation

Trigger step is executed from received data.

CRC RX

NBS Process Used to enable CRC calculation step for CRC 15 when CRC calculation step is

Trigger executed from received data.

50

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
JXFS Version 021, Commit:5d16182, 2026-0-01

4.1.8 Bus traffic counters

File: bus_traffic_counters.vhd

Bus traffic counters contains two 32-bit counters (TX frame counter and RX frame counter). TX frame counter counts
succesfully transmitted frames (without error frame or arbitration lost) and is incremented by 1 for each such transmitted
frame. RX frame counter counts succesfully received frames (without error frame) and is incremented by 1 for each
such a frame. If unit is transmitter in Loopback mode (it also receives frame transmitted by itself), both counters are
incremented upon succesfull transmission/reception. In such case, TX frame counter is incremented when transmitted
frame is considered valid and RX frame counter is incremented when received is considered valid as defined in 10.7 of
[1])-

Both counters can be erased by SW via COMMAND[TXFRCRST] and COMMAND[RXFRCRST] register. Value of
traffic counters can be read out from TX_ FR_CTR and RX_FR_CTR registers. Bus traffic counters are instantiated
only when sup traffic counters=true. When Bus traffic counters are not instantiated, access to TX_COUNTER and
RX_COUNTER registers are reserved and writes to COMMAND[TXFRCRST] and COMMAND[RXFRCRST] have no
effect.

4.2 RX buffer
File: rx_buffer.vhd

RX buffer implements following functionality:

e Stores CAN frames and Errorframes to FIFO memory as CAN frame progresses.
e Counts number of stored frames in FIFO.
e Provides read interface for Memory registers.

e Aborts storing of CAN frame in case of an error frame request or overrun.

Block diagram of RX buffer is shown in Figure 4.19.

o1

s%?/;g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

fend rx_buffer Reception Valid
eal ;

) Timestamp stored < (Filtered)
Increment _(* Frame Commit ‘|« rx_buffer_fsm < Store Data

Logic

P (Filtered)
/4 Data - Store Metadata
Reset Overrun (Filtered)
Overrun Flag < -
Reception Abort
Write P (Filtered)
Data Overrun Intent b
And Free Memo s
h A El
Handling Logic Write OK o &3
Read Frame g g 2
Seg
£33
rg kel
Commit - A 4 \ 4
Abort : rx_buffer_pointers
Write Pointer > N
Read Pointer » | ®
< Z1% [|writeok
s |» =
Empty AR E
4—_
I 21zl
Fu | 52 |2 RX Metadata
218 |8 \ r
y v" v~ v Memory A pataMultiplexing L RX Identifier
RX Buffer »{ rx_buffer_ram Word and Timestamp .)¢ RX Data Word
_ Output Capturing Logic |- b Timestamp
h D Sof Pulse

A

Figure 4.19: RX buffer block diagram

RX buffer contains FIFO memory (details of actual RAM memory are described in 3.7). The FIFO memory stores received
CAN FD frames, or Error frames (if CTU CAN FD is configured to do so). Size of RX buffer memory is configurable by
rx_ buffer size. Lower limit on size of RX buffer RAM is set to be able to store at least 1 CAN FD frame with 64 byte
data payload. Format of CAN FD frame within the memory is described in 3.10 and visualized in Figure 4.20. Size of
CAN frame within RX buffer memory spans from 4 to 20 32-bit memory words. Remote frames, frames with no data field
and Error frames span 4 memory words (Metadata, Identifier, Timestamp upper and Timestamp lower). Each 4 bytes
of data field span one memory word. Longest frame with 64 data bytes spans 20 memory words (Metadata, Identifier,
Timestamp upper, Timestamp lower and 16 data words).

RX frame is stored to FIFO by Storing protocol described in 4.2.1. RX Frame is read from FIFO by Reading protocol
described in 4.2.5. RX buffer contains pointers to FIFO which are described in detail in Table 4.26. RX buffer can by
flushed by issuing Release receive buffer command (writing logic 1 to COMMANDI[RRB]). In such case, all pointers are
reset to zero as well as counter of stored frames (see 4.2.5). If Release receive buffer command is issued by SW during
storing of CAN frame, overrun flag is set, and upon the end of actual frame this frame is discarded, and Raw write pointer
is reset to value of previous Comited write pointer.

52

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

Table 4.26: RX buffer pointers

Pointer Incremented by 1 Pre-loaded Pre-load value
Raw write When a word is written to RX When Reception abort command is Commited write
pointer buffer RAM (Metadata, Identifier, issued or, Reception valid command is pointer

Timestamp or Data word) issued and Overflow occured before in

the frame.

Commited - When frame is commited. Raw write pointer
write
pointer
Timestamp | During storing of Timestamp lower | When Raw write pointer points to Raw write pointer
write word. Lower timestamp word of frame which
pointer is actually being stored.
Read When a word is read from RX - -
pointer buffer.

r Address rx_buff size - 1

DATA_61_64_W

DATA _1_4_W
TIMESTAMP_U_W
TIMETAMP_L_W
IDENTIFIER_W
FRAME_FORMAT_W
TIMESTAMP_U_W
TIMESTAMP_L_W
IDENTIFIER_W
FRAME_FORMAT_W
DATA_5_8_W
DATA _1_4_W
TIMESTAMP_U_W
TIMESTAMP_L_W
IDENTIFIER_W
FRAME_FORMAT_W

L

Address 0

J

Figure 4.20: RX buffer memory format

4.2.1 Storing protocol

N

/\

J\

< Write pointer

CAN FD Frame

[(64 data bytes)

— RTR frame

| CAN 2.0/ FD frame

(8 data bytes)

Protocol control FSM forms “Master” side of Storing protocol, and issues commands as described in Table 4.27. Com-
mands from Protocol control FSM are filtered by Frame filters before being connected to RX buffer. Commands pass

CAN fame filters when RX frame matches CAN frame filters as described in 4.3.

If received frame does not match

CAN frame filters, commands are gated, and does not reach RX buffer within current CAN frame. RX buffer FSM
forms “Slave” side of this protocol, it receives commands and reacts upon them. State transition diagram of RX buffer
FSM is shown in Figure 4.23. Commands are issued by Protocol control FSM continously as reception of CAN frame
progresses. Commands are issued by Protocol control FSM only when unit is receiver of a frame, or when Loopback
mode (SETTINGS[ILBP] = '1’) is enabled. An example of Storing protocol is shown in Figures 4.2.1 and Figure 4.22.
Storing protocol is described in Table 4.28. If CTU CAN FD is configured to log Error frames to RX buffer, then upon
Error Frame (Receive Abort Command), RX buffer stores 4 words that represents the Error frame.

53

s%?/g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

As CAN frame is being stored, the frame can’t be read out by SW via Memory registers. Only after the frame is succesfully
received without error frame or overrun (last bit of EOF field), it becomes available for readout by SW (the frame is so
called “commited™).

CAN frame part Arbitration X Control » Byte1 X Byte2 X Byte3 X Byte4 : Byte5 X Byte6 CRC X X Endofframe 3
Store metadata |—~|
Store data |—~| |—~|
Reception valid ® 4 |_h~|_
Metadata + Identifier stored Yellow Data word stored ~ Oragne Data word stored Timestamp stored

Figure 4.21: RX buffer storing protocol - succesfull reception

CAN frame part Idle YSOF Arbitration X Control = Byte1 X Byte2 X Byte3 X Byte4 < Byte5 X Byte6 ¢ CRC N\ i Emorframe)
Store metadata |——|
Store data |—_| |—_|
Reception abort b H i |]—|
Metadata + Identifier stored Yellow Data word stored ~ Oragne Data word stored ~ Raw Write Pointer reverted

Figure 4.22: RX buffer storing protocol - Error frame

\€
s Idf/
Reception

Store Metadata Abort no
Error frame

logging

Store Error
Frame Format

Store Frame
Format

Store Identifer

Skip Timestamp
Lo

Reception

Abort with
Error frame
logging

Store Error

Store Tlmestamp Identifier

High

A

Store Error

Timestamp Low

Store Timestamp
Low

1

Skip Timestamp
High

Store Data

Store Error
Timestamp High

Reception Valid Reception Abort
with Error frame
logging
Reception Abort

no Error frame logging
or Overrun set

Figure 4.23: RX buffer FSM

o4

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
JXFS Version 021, Commit:5d16182, 2026-0-01

Table 4.27: RX buffer commands

Command Issued in CAN frame part Action performed Source of stored information to
RX buffer RAM
Store At the end of data length Store Metadata word, Frame metadata and identifier
metadata code field. Identifier word and zeroes to | from capture registers in RX shift
Timestamp words. register in Protocol control.
Store data After multiple of 4 bytes of Store Data word (4 bytes). RX shift register in Protocol
data field elapsed and at the control.
end of data field.
Reception In sample point of last bit of | Timestamp is stored and Timestamp capture register.
valid EOF field. afterwards CAN Frame is
commited to memory.
Reception When error frame is Frame storing is aborted, Raw | -
abort transmitted. write pointer is reverted to
last Commited write pointer.

Table 4.28: RX buffer storing protocol - detailed description

Step Action

1 Reception of CAN frame starts. If received frame timestamp is configured to be captured at SOF
(RX_SETTINGS[RTSOPT]), the timestamp is stored to a Timestamp capture register.

2 Identifier is received to RX shift register in Protocol control, and stored to a dedicated capture register.
Metadata are stored to dedicated capture registers in Protocol control. See 4.1.1.

3 At the end of control field, it is already clear whether unit is transmitter or receiver. It can no longer

happend that a word will be stored to RX buffer and unit will turn receiver due to losing arbitration. if
CTU CAN FD is receiver or in Looback mode, Protocol control FSM issues Store metadata command.

4 RX buffer FSM stores Frame format word, received CAN identifier to Identifier word and zeroes to
Timestamp words. This happends during 4 consecutive clock cycles after “Store Metadata” command.
Raw write pointer is incremented by 1 during each of these cycles. When Raw write pointer points to
Lower Timestamp word, its value is captured to Timestamp write pointer. After this step Raw write
pointer points to first Data word.

5 Data field of CAN frame starts. After each 4 bytes are received on the CAN bus, Protocol control FSM
issues Store data command. The 4 bytes are stored to a single word in RX buffer RAM, and Raw write
pointer is incremented by 1.

6 At the end of last bit of data field, Protocol control FSM issues Store data command if the length of data
field is not multiple of bytes. Remaining bytes are stored to RX buffer RAM, and Raw write pointer is
incremented.

7 CAN frame progresses to EOF field. In sample point of EOF field, received frame is considered valid (if no

error frame occurred). Protocol control FSM issues “Reception valid” command. If received frame
timestamp shall be taken in EOF, it is captured to a capture register.

8 Timestamp is stored from its capture register (by means of Timestamp write pointer), to Timestamp low
and Timestamp high memory words of RX buffer.
9 If overrun condition did not occur during storing of current frame, frame is commited to memory, Raw

write pointer moves to Commited write pointer and number of frames in RX buffer (Frame counter) is
incremented. If overrun condition or Release receiver buffer command did occur during storing of current
frame, frame is not commited to memory, Raw Write Pointer is reverted to Commited Write Pointer and
number of frames in RX buffer remains unchanged.

35

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
JXFS Version 021, Commit:5d16182, 2026-0-01

4.2.2 Qverrun flags

RX buffer maintains two overrun flags: User overrun flag and Internal overrun flag. Both overrun flags are set when RX
buffer FSM intents to store a word to RX buffer RAM, and RX buffer RAM is full (Overrun condition). Internal overrun
flag is reset at the end of CAN frame. User overrun flag is reset by SW writing COMAND[CDO]=1. When the frame
is error-free (no error frame), but overrun condition occured at some point before in the frame (Internal overrun flag is
set), frame is discarded (not commited) and Write pointers are reverted to their previous commited value.

4.2.3 Received frame timestamp

RX buffer implements Timestamping of received frames. Such timestamp is created by sampling timestamp input of
CTU CAN FD in sample point of SOF or EOF bits (configured by RX SETTINGS[RTSOP]). In sample point of these
bits, timestamp is captured to capture register. Timestamp is stored to RX bufer RAM from capture register at the
end of CAN frame. As position of Timestamp memory words within RX buffer RAM is lower than Data words, when
timestamp is about to be stored (in sample point of EOF), Raw write pointer is pointing one memory word behind
last word of CAN frame. Due to this reason, Raw write pointer can't be used to store received frame timestamp, and
dedicated Timestamp write pointer is used. This pointer is loaded by RX buffer FSM to point to first Timestamp word
in RX buffer RAM.

4.2.4 RX buffer Parity

If enabled at synthesis time by sup _parity , each RX buffer memory word has additional parity bit. The parity bit is
stored as the word is being stored to the RX buffer RAM. When the RX buffer word is being read, the parity is computed
again and compared with stored parity. If the computed and stored parity are not equal, a flag is set in Memory registers.

4.2.,5 Reading protocol

CAN frame in RX buffer is read by SW. To read the frame SW executes read accesses to RX DATA register. There are
two modes (distuiguished by MODE[RXBAM] bit) in which RX buffer can be read:

e Automated mode (default) - SW must read via 32 bit accesses. When RX DATA register is read, RX buffer read
pointer automatically moves to next word.

e Manual mode - SW can read via 8/16/32 bit accesses. When RX_DATA register is read, RX buffer read pointer is
NOT moved automatically to next word. To move RX buffer to next word, use must issue COMMAND[RXRPMV]).
This mode can be used in systems which are incapable of executing “atomic” 32 bit accesses, and require reading
by 8 or 16 bit accesses.

Behavior of RX buffer during reads is described in 4.29. Read pointer is incremented after each word is read, either
manually or automatically (an exception to this rule is when FIFO is empty). RX buffer supports single reads (Read
indication asserted for one clock cycle) and also continous burst read (Read indication asserted for several consecutive
clock cycles). Since RX buffer RAM has one clock cycle delay on data output, RAM read address is speculatively
multiplexed between Read pointer and Read pointer + 1 as shown in Figure 4.24. Due to this speculation RX buffer read
pre-feteches data from next memory word instead of memory word given by Read pointer. This speculation is executed
to support burst read.

56

s%%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

Table 4.29: RX buffer - read protocol

Step Action

1 Read pointer points to Frame Format word of most recently stored frame in RX buffer. Output of RX
buffer RAM contain Frame Format word.

2 SW reads from RX_DATA register (Frame Format word). Auxiliarly counter is loaded to value of
RWCNT. Read pointer is incremented by 1.

3 SW now knows value of RWCNT (number of remaining words in currently read frame). SW reads from

RX _DATA register RWCNT times. Read Pointer is incremented by 1 and auxiliarly counter is
decremented by 1 after each of these reads.
4 During last read (when auxiliarly counter transits from 1 to 0), Frame counter is decremented by 1.

systemobook [|| [| | __J L L LI [LI LI |

Memory Bus - Read / \ / \
Memory Bus - Address RX_DATA 00 000
Memory Bus - Read data u‘ Identifier_} Times. Low) Times. High { Dataword 1) Dataword 2 { Dataword3 X/ /)
RX Buffer read / \ / RAM read data to M.!;mory bus read data \
RX Buffer RAM read data Frame Format X ,° identifier © i Times.Low % Times. High) Dataword 1) Dataword 2 | Dataword3) Frame Format (next frame)
RAM acress fo RAM read data
RX Buffer RAM address Frame Format }__ = Identifier X_Times. Low & Times. High) Dataword 1) Dataword 2 { Dataword 3 (Frame Format®{ __Identifier (next frame)
Read pointer Frame Format X Identifier X Times. Low X Times. High) Dataword 1 } Dataword 2)} Dataword3 _Frame Format (next frame)
Speculative read pointer Identifier X Times. Low X Times. High X Dataword 1) Dataword 2 | Dataword 3 fFrame Format'} _Identifier (next frame)
Use speculative pointer / \ / \

* Frame format (next frame)

Figure 4.24: RX buffer - Read pointer speculation

RX buffer contains Frame counter (readable by SW via RX STATUS[RXFRC]). Frame counter holds amount of CAN
frames actually stored in RX buffer. Frame counter is incremented by 1 when a frame is commited to RX buffer. Since
RX buffer RAM is read word by word, RX buffer counts each read word from Memory registers and decrements Frame
counter only when whole frame was read. If new frame is committed at the same time as last word of another frame is
read, Frame counter remains unchanged. Manipulation with Frame counter is described in Table 4.30.

Table 4.30: Frame counter handling

Step Action

1 Frame counter is 0. CAN frame is being received and stored to RX buffer RAM.
2 Frame ends and it is commited to RX buffer, Frame Counter is incremented to 1.
3 Read Pointer points to the first word of CAN frame (Frame format word). Memory registers issue a read

from RX buffer. RX buffer RAM output contains Frame Format word. RX buffer loads value of RWCNT
(Read word count) to an auxiliarly counter. Frame counter remains 1 and Read Pointer increments and
points to Identifier word.

4 Memory registers issue RWCNT - 1 number of reads from RX buffer and Read pointer increments by 1 on
each read. Auxiliarly register decrements by 1 each read.
5 Memory registers issue a read from RX buffer (reading last word of CAN frame). Auxiliarly register

indicates that last word of frame is read and Frame counter is decremented by 1.

a7

sugg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

426 RX buffer RAM

If target technology = 0 (ASIC), clock for RX buffer RAM are gated if RX buffer RAM is not written nor read.

58

%.%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

4.3 Frame Filters
File: frame_filters.vhd

Frame filters implement following functionality:

e Filter RX frames before storing to RX buffer based on CAN Identifier.

e Gate RX buffer commands when identifier does not pass Frame Filters.

Frame filters implement two types of filters: Bit filter and Range filter. There are three instances of Bit filter (A, B, C),
and one instance of Range filter. Each instance is selectively synthesizable by sup filt A/B/C or sup _range generics.
If filter is not synthesized, it is not taken into account during frame filtering. When no Frame filter is synthesized, all RX
frames are stored to RX buffer and no frame is filtered out.

CAN frame passes Frame filters if received identifier passes at least one filter (logical OR). Filters are considered only
when Acceptance filter mode is enabled (MODE[AFM] = '1'). When Acceptance filter mode is disabled, all received
frames are stored to RX buffer RAM.

Each filter can be configured to accept only given combination of Frame type and Identifier type via FILTER _CONTROL
register. If received Frame type and ldentifier type does not match accepted Frame type and Identifier type, it does not
pass filter even if its identifier is matching. For description of filter operation reffer to 4.31 and 4.32. The logic equations
in these tables follow C-like syntax with “&" meaning “logical AND" and “&&" meaning “boolean AND". (A,B) means
concatenation of vectors A and B where A is MSB. Note that accepted combinations of Accepted Frame types / Identifier
are one-hot coded in FILTER CONTROL register and therefore any combination of these settings can be used.

Table 4.31: Bit filter operation

Accepted Frame

types / ldentifier | Received Condition for frame to pass

types Identifier RX_BASE = Received base identifier, RX EXT = Received identifier

type extension, FILTER X MASK (A,B,C) = Filter mask, FILTER X VALUE

(A,B,C) = Filter value, FR_TYPE = Received frame type (corresponds to
FDF bit), ID_TYPE = Received identifier type (corresponds to IDE bit)

CAN Base [(RX _BASE & FILTER MASK(28:18)) == (FILTER BASE(28:18) &

2.0 FILTER MASK(28:18))] && (FR_TYPE == CAN 2.0) && (ID_TYPE ==

/ Base)

Base Extended not accepted

CAN Base [(RX _BASE & FILTER MASK(28:18)) == (FILTER BASE(28:18) &

FD FILTER MASK(28:18))] && (FR_TYPE == CAN FD) && (ID_TYPE ==

/ Base)

Base Extended not accepted

CAN Base not accepted

2.0 Extended [(RX_BASE & FILTER MASK(28:18)) == (FILTER BASE(28:18) &

/ FILTER MASK(28:18))] && [(RX_EXT & FILTER _MASK(17:0)) ==

Extended (FILTER _BASE(17:0) & FILTER MASK(17:0))] && (FR_TYPE == CAN
FD) && (ID_TYPE == Extended)

CAN Base not accepted

FD Extended [(RX_BASE & FILTER _MASK(28:18)) == (FILTER BASE(28:18) &

/ FILTER MASK(28:18))] && [(RX EXT & FILTER MASK(17:0)) ==

Extended (FILTER BASE(17:0) & FILTER MASK(17:0))] && (FR_TYPE == CAN
FD) && (ID_TYPE == Extended)

99

%.%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Table 4.32: Range filter operation

Accepted Frame
types / ldentifier Received Condition for frame to pass
types Identifier RX _BASE = Received base identifier, RX EXT = Received identifier
type extension, FILTER _RAN _LOW = Lower filter threshold,
FILTER RAN_HIGH = Upper filter threshold, FR_TYPE = Received frame
type (corresponds to FDF bit), ID_TYPE = Received identifier type
(corresponds to IDE bit)
CAN Base (RX_BASE >= FILTER_RAN LOW(28:18)) && (RX_ BASE <=
2.0 FILTER _RAN_ LOW(28:18) && (FR_TYPE == CAN 2.0) && (ID_TYPE
/ == Base)
Base Extended not accepted
CAN Base (RX_BASE >= FILTER_RAN_ LOW(28:18)) && (RX BASE <=
FD FILTER _RAN_LOW(28:18)) && (FR_TYPE == CAN FD) && (ID_TYPE
/ == Base)
Base Extended not accepted
CAN Base not accepted
2.0 Extended ((RX_BASE, RX_EXT) >= FILTER _RAN_LOW/(28:0)) && ((RX BASE,
/ RX EXT) <= FILTER _RAN_ LOW(28:0)) && (FR_TYPE == CAN 2.0)
Extended && (ID_TYPE == Extended)
CAN Base not accepted
FD Extended ((RX_BASE, RX_EXT) >= FILTER _RAN_LOW/(28:0)) && ((RX BASE,
/ RX EXT) <= FILTER _RAN_ LOW(28:0)) && (FR_TYPE == CAN FD)
Extended && (ID_TYPE == Extended)

4.4 TXT buffer
File: txt_buffer.vhd

TXT buffer implements following functionality:

e Stores single CAN frame for transmission in internal RAM memory.
e Manages access from HW and SW to its RAM memory.

e Provides status of frame transmission for SW.

Number of TXT buffers in CTU CAN FD is configurable at synthesis time by txt_buffer count. Each TXT buffer
contains 1 RAM memory. Each TXT buffer RAM is accessed by SW via Memory registers as described in [1]. SW stores
CAN frame to TXT buffer. For SW, TXT buffer RAM is write-only. TXT buffer RAM is also accessed by Protocol
control FSM and TX arbitrator. TX arbitrator reads parts of CAN frame during TXT buffer valiation. Protocol control
FSM reads data words from TXT buffer RAM as they are being transmitted on CAN bus. For Protocol control and TX
arbitrator, TXT buffer is read-only. TXT buffer is managed by FSM which is shown in Figure 4.25. CAN frame format
in TXT buffer is the same as in RX buffer, and it is described in 3.10. Each TXT buffer in CTU CAN FD has its own
priority (configured by SW in TX PRIORITY register). Based on priority, TX arbitratror selects TXT buffer which will
be used for transmission (see 4.5).

60

g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

Set Ready Set Ready
L4
ﬂ\Ready ; Set Abort
Arb. Lost,
Set Abort Lock Error
and Done

.

Lock
@
Progress Set Abort and
‘ Set Abort Arb. Lost or Error
\ 4
4 Abom Arb. Lost, Error
Progress

Failed

Parity Error

Set Empty

Legend:
HW Command >

 SWeommand
Simultaneous locked

HW/SW Command >

I) 4

Figure 4.25: TXT buffer FSM

4.41 TXT buffer commands

Two types of commands can be issued to TXT buffer: SW commands and HW commands. SW commands are issued by
SW access to TX _COMMAND register. HW commands are issued by Protocol control FSM. Both command types are
described in Table 4.33. Since operation of SW and Protocol control FSM are not synchronized, HW and SW commands
can occur simultaneously. Behavior in such cases is described in Table 4.34. If SW command is applied to TXT buffer
FSM in state for which it is not valid, it has no effect. HW command is never applied in TXT buffer FSM state for which
it is not valid (there are design assertions to check that).

Table 4.34: TXT buffer simultaneous HW/SW commands

HW SW TXT buffer Result

Com- Com- state

mand mand

Lock Set abort | Ready TXT buffer becomes “Abort in progress’, Protocol control attempts
to do do single transmission from thix TXT buffer.

Unlock - | Set abort | TX in Progress TXT buffer is unlocked and becomes “TX OK" since transmission is

done successfull.

Unlock - | Set abort | TX in Progress TXT buffer is unlocked and becomes “TX failed” since transmission

failed failed.

Unlock - | Set abort | TX in Progress TXT buffer is unlocked and becomes “Aborted”. No more

arbitra- transmissions are attempted from this TXT buffer. In this case SW

tion lost, command has priority over HW command. Due to this, transmissions

error will not go on from thix TXT buffer.

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01
Table 4.33: TXT buffer commands
Command Command | Valid TXT When is command issued
name type buffer States
Set ready SW Empty, TX OK, | SW stored CAN frame to TXT buffer RAM and wants to transmit
Aborted, TX this frame.
failed
Set empty SW TX OK, SW wants to move TXT buffer to its inital state after reset.
Aborted, TX
failed
Set abort SwW Ready, TX in SW wants to abort transmission of a frame whose transmission has
progress, Abort been previously requested by Set ready command.
in progress
Lock HW Ready Protocol control FSM starts transmitting frame from TXT buffer.
Unlock - HW TX in progress, Protocol control FSM successfully transmitted frame from TXT
done Abort in buffer.
progress
Unlock - HW TX in progress, Error frame occurred, Protocol control stops transmitting from
error Abort in TXT buffer.
progress
Unlock - HW TX in progress, Arbitration was lost, Protocol control stops transmitting from TXT
arbitration Abort in buffer.
lost progress
Unlock HW TX in Progress, A frame was re-transmitted number of times unsucesfully (either
failed Abort in arbitration was lost or error frame occurred) and Retransmitt
progress counter reached Retransmitt threshold. Frame transmission will not
be attempted anymore.

4.4.2 TXT buffer RAM

File: txt_buffer _ram.vhd

TXT buffer RAM is written by SW (port A) and read by Protocol Control FSM (port B). TXT buffer RAM can be
in one of two states: Unlocked and Locked. TXT buffer FSM states corresponding to Locked and Unlocked state of
TXT buffer RAM are demonstrated in Figure 4.25. When TXT buffer is unlocked, it is not acessed by Protocol control
(nor TX arbitrator) as there is no frame transmission /validation from this TXT buffer, and SW can write to TXT buffer
via Memory registers. When TXT buffer is Locked, it was either marked as Ready, or validated by TX arbitrator, or
transmission is in progress from this TXT buffer. When TXT buffer is locked, SW can not write to TXT buffer RAM,
and attempts to write have no effect.

4.4.3 TXT buffer - Transmission availability

When TXT buffer FSM is in Ready state, it is “Available” for transmission from TX arbitrators point of view. However,
if TXT buffer receives Set abort command, it become “Unavailable” for transmission in the same clock cycle as Set abort
command is active (txtb available drops low). In this clock cycle, TXT buffer FSM is still in Ready state, and it will
move to Aborted (or Abort in progress) in the following clock cycle. This combinatorial path from Set abort command
to output of TXT buffer is necessary to avoid hazards on TXT buffer selection as explained in 4.5.10.

62

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
JXFS Version 021, Commit:5d16182, 2026-0-01

4.4.4 TXT buffer Parity

If enabled at synthesis time by sup _ parity , each memory word of TXT buffer has additional parity bit. When the word
is being written, the parity bit is computed and stored. When the word is being read by TX Arbitrator or Protocol Control
FSM, the parity is computed again and compared with the read parity. If the computed parity and the read parity are
not equal, the behavior is following:

e If the error is in Frame format, Identfier, Timestamp Low or Timestamp High words, the error occured as these
4 words were being read during TXT buffer validation. In this case, TXT buffer validation fails, and TXT buffer
moves to Parity Error state. Transmission from this TXT buffer is never attempted.

e if the error is in some of the Data words, the parity error is detected as the word is read (during transmission of
CAN frame). In this case, Protocol Control FSM transmits Error frame on the CAN bus, and TXT buffer moves
to Parity Error state.

4.45 TXT buffer - Use cases

Table 4.35: TXT buffer - sucessfull transmission

Step | SW Action HW Action / State

1 SW fills TXT buffer RAM. TXT buffer is in Empty state.

2 SW issues Set ready command. | TXT buffer moves to Ready state.

3 TX arbitrator validates TXT buffer for transmission and indicates this

to Protocol control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command, TXT buffer moves to TX
inprogress and Protocol control starts transmission from TXT buffer.
4 Frame transmission ends successfully and Protocol control issues
Unlock - done command. TXT buffer moves to TX OK state.

5 SW reads state of TXT buffer
and finds out that transmission
ended succesfully.

63

s%%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

Table 4.36: TXT buffer - Abort

Step | SW Action HW Action / State

1 SW fills TXT buffer RAM. TXT buffer is in Empty state.

2 SW issues Set ready command. TXT buffer moves to Ready state.

3 TX arbitrator validates TXT buffer for transmission and

signals to Protocol control there is a valid TXT buffer for
transmission. On third bit of Intermission or when bus is
idle, Protocol control issues Lock command, TXT buffer
moves to TX in progress. Protocol control starts
transmission from TXT buffer.

4 During transmission SW issues Set abort | TXT buffer moves to Abort in progress.
command to TXT buffer.

5 If error frame occurs or arbitration is lost, TXT buffer moves
to Aborted state. If frame transmission finished succesfully,
TXT buffer moves to TX OK state.

6 SW reads state of TXT buffer and finds
out whether transmission was aborted or
it ended succesfully.

Table 4.37: TXT buffer - transmission failed

Step | SW Action HW Action / State

1 SW fills TXT buffer RAM. SW configures | TXT buffer is in Empty state.
retransmitt limit to 5 and enables
retransmitt limitation.

2 SW issues Set ready command. TXT buffer moves to Ready state.

3 TX arbitrator validates TXT buffer for transmission and
indicates available TXT buffer for transmission to Protocol
control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command, TXT buffer moves to

TX in progress and Protocol control starts transmission from
TXT buffer,

4 An error frame occurs or arbitration is lost, Protocol control
issues Unlock - error or Unlock - arbitration lost command.
TXT buffer moves to state Ready. Retransmitt counter is
incremented by 1.

5 On 5th retransmission (retransmitt counter = 5), error
occurs. Protocol control issues Unlock - failed command.
TXT buffer FSM moves to TX failed state.

6 SW reads state of TXT buffer and finds
out that transmission failed.

64

%.%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Table 4.38: TXT buffer - Simultaneous Set abort and Lock

Step | SW Action HW Action / State

1 SW fills TXT buffer RAM. TXT buffer is in Empty state.

2 SW issues Set ready command. TXT buffer moves to Ready state.

3 SW decides to abort transmission of this TX arbitrator validates TXT buffer for transmission and
frame and issues Set abort command. indicates available TXT buffer for transmission to Protocol

control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command. By coincidence, Set
abort command (SW) and Lock command (HW) are active
in the same clock cycle. TXT buffer moves to Abort in
progress and Protocol control starts transmission from TXT
buffer.

4 An error frame occurs or arbitration is lost, Protocol control
issues Unlock - error or Unlock - arbitration lost command.
TXT buffer moves to state Aborted.

5 SW reads state of TXT buffer and finds
out that transmission was aborted.

65

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
oF

i

Version 0.21, Commit:5d16182, 2026-02-01

45 TX arbitrator

File:

tx__arbitrator.vhd

TX arbitrator implements following functionality:

Picks TXT buffer for transmission.
Loads CAN frame metadata and Identifier from TXT buffer, and provides them to CAN core for transmission.

Checks parity of Metadata, Identifier and Timestamp words read from TXT buffer, and signals to TXT buffer that
it contains corrupted data.

Executes comparison of timestamp input with transmitted frame timestamp and determine moment of CAN frame
transmission.

Signals to CAN core that CAN frame was validated, and can be locked for transmission.
Holds index of TXT buffer from which CAN core is actually transmitting.

Detects change of TXT buffer between two consecutive transmissions.

TX arbitrator block diagram is shown in Figure 4.26.

66

s%?/;g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

bus_samplin
TXT Buffers - ping

TXT Buffer address
Port B L —
« Address priority_decoder < TXT Buffer priorities
P Selection TX:’ Buffers aya!IabIe
- Pointer) ° or transmission
Pointer control I TXT Buffer
available
v
Selected Buffer tx_arbitrator_fsm Frame
. Jelected
index |
TXT Buffer
< changed Transmitting 4
and Last st) 4
Buffer Index ore \ TX Frame valid
Index TX Frame ready »
vy — Index selector logic
- Store
TXT Buffer 1 Buffer Metadata Metadata
RAM Store Timestamp Timestamp
Port B Data _ valid
"1 \y TXT Buffer
Read Data Timestamp
TXT Buffer 4 > Capture :/T;:(;;\mp
RAM registers tc\o_rlwsarison
Port B Data N v v x
g Metadata Metadata TX Frame Metadata
double-buffer—» capture »
registers registers

TX Frame Data word
Timestamp >

Legend:
Memory Out of CTU Protocol TXT
_ registers CAN FD _ Control P Buffers

< < <

Figure 4.26: TX arbitrator block diagram

4.5.1 TXT buffer validation process

With regards to processing by TX arbitrator, each TXT buffer can be in one of states described in Table 4.39. TXT buffer
validation process starts when Priority decoder picks highest priority Available TXT buffer (such TXT buffer becomes
“Selected”) for transmission (see 4.5.2). Validation process is described in 4.40. An FSM controlling the selection is
shown in 4.27. Note each state of TXT buffer FSM which is part of TXT buffer validation lasts for two clock cycles due
to wait state. Such wait state is inserted to cover delay of TXT buffer RAM.

If index of Selected TXT buffer changes (due to another higher priority TXT buffer becoming Ready, or change of TXT
buffers priorities) during validation process, or after validation process was finished (TX arbitrator FSM is in Validated
state), TXT buffer validation process restarts with newly Selected TXT buffer.

If Validated TXT buffer suddenly becomes Unavailable (due to Set abort SW command), TX arbitrator signals immediately
(in the same clock cycle) to Protocol control FSM that there is no Validated TXT buffer (this is done to avoid control
hazards on TX frame datapath, and it is further explained in 4.5.10) and TX arbitrator FSM moves to Idle state. Several
use-cases are explained in 4.41 and 4.42.

67

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

fe

When there is a Validated TXT buffer, Protocol control FSM issues Lock command during bus idle, or third bit of
intermission. In such case, TX arbitrator goes to Locked state and TXT buffer becomes Used from TX arbitrators point
of view (TXT buffer FSM itself goes to TX in progress). Protocol control then transmitts the frame from this TXT buffer,
and upon the end of transmission issues Unlock command. TXT buffer then becomes either Available or Unavailable
(see 4.4.1).

If during TXT buffer validation process, TX Arbitrator detects parity error in Metadata, Identifier or Timestamp words, it
immediately aborts validation of such TXT buffer, and signals this to TXT buffer. If TXT buffer is “Used” (transmission
is being executed from it), and TX Arbitrator detects that parity is corrupted on a data word which is being transmitted,
it also signals this to TXT buffer.

No TXT Buffer available

Any TXT Buff A 4 Legend:
‘m r“;vailabllje 3 /l—dD
Timestamp word \\
Wait state elapsed A
Selected
TXT buffer Select High
changed Timestamp word Unlock -
Wait state elapsed, Wait state
Timestamp valid Wait state elapsed
Select Frame "¢ ~Telect Identifier
| format word word @
Figure 4.27: TX arbitrator FSM
Table 4.39: TX arbitrator - TXT buffer processing
Filter name | Description
Unavailable | TXT buffer is Unavailable when it is not Available for transmission as defined in 4.4.3. Such a TXT
buffer is ignored by TX arbitrator.
Available TXT buffer is Available when it is Available for transmission as defined in 4.4.3.
Selected TXT buffer is Selected when it is Available with highest priority out of all Available TXT buffers.
Validated TXT buffer is Validated when it is Available for transmission, its Timestamp comparison has been
executed and Metadata from TXT buffer RAM (Frame format word) has been loaded to capture
registers for CAN core.
Used TXT buffer is Used after CAN core issues Lock command on Validated TXT buffer and is
transmitting from this TXT buffer.

68

%.%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Table 4.40: TX arbitrator operation

Step External action (SW or external HW action
components)

1 No TXT buffer is Available.

SW fills TXT buffer 1 and issues TXT buffer 1 FSM goes to Ready state is and therefore Available
Set ready command to this TXT for TX arbitrator. As this is only TXT buffer which is Available,

buffer. Priority decoder selects it as highest priority Available TXT buffer.

3 TX arbitrator FSM loads Lower timestamp word from TXT buffer
1 RAM, and stores it to auxiliarly register.

4 TX arbitrator FSM loads Upper timestamp word from TXT buffer

1 RAM and executes comparison of timestamp input and
timestamp of CAN frame in TXT buffer 1 (Lower word is in
auxiliarly register and Upper word is on output of TXT buffer 1
RAM). When timestamp is lower than timestamp of CAN frame
in TXT buffer 1, TX arbitrator waits, otherwise it proceeds to step

5.

5 timestamp is incrementing (as it TX arbitrator detects timestamp input is now higher than
counts running time within a timestamp of CAN frame in selected TXT buffer. At this moment
system) and it reaches value of TX arbitrator proceeds with frame validation.

CAN frame timestamp in TXT
buffer 1.
6 TX arbitrator FSM loads TX frame metadata from TXT buffer 1

RAM (Frame format word) to double-buffer registers. These are
not visible to CAN Core, they hold metadata internally.

7 TX arbitrator FSM loads TX frame identifier from TXT buffer 1
RAM (Identifier word) to Identifier capture register. At the same
clock cycle, TX arbitrator FSM loads metadata from double-buffer
registers to capture registers on output of TX Arbitrator. Reffer to
4.5.9 for explanation.

TXT buffer 1 becomes “validated” and TXT arbitrator signals that
there is a valid TX frame for transmission to CAN core.

8 When Protocol control FSM is in sample point of third bit of
intermission or bus idle, it issues Lock command to TXT buffer 1
(TXT buffer 1 becomes Used, TXT buffer FSM moves to TX in
progress state) and TX arbitrator becomes Locked.

9 TX arbitrator is Locked and it is waiting for Unlock command. No
TXT buffer validation is in progress. If another higher priority TXT
buffer became Available this has no effect as frame transmission is
already in progress.

10 Protocol control transmitts frame from TXT buffer 1, and issues
Unlock - done command to TXT buffer 1 (TXT buffer 1 becomes
Unavailable and TXT buffer FSM moves to TX OK). Since TXT
buffer 1 was only TXT buffer which was Available before the
transmission, now there is no TXT buffer which is Available.
Therefore no TXT buffer is Selected, and no TXT buffer validation
is in progress. TX arbitrator signals there is no Validated TXT
buffer to CAN Core.

11 SW reads state of TXT buffer 1
and finds out whether transmission
was aborted or it ended succesfully.

69

%.%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Table 4.41: TX arbitrator - use-case 1

Step External action (SW or external HW Action
components)

1 SW configures priority 1 to TXT TXT buffer 1 FSM goes to Ready state and therefore TXT buffer
buffer 1 and priority 2 to TXT 1 becomes Available from TX arbitrators point of view. Since this

buffer 2. SW fills TXT buffer 1 and | is only Available TXT buffer, it becomes Selected.
TXT buffer 2 by CAN frames. SW
issues Set ready command to TXT

buffer 1.

2 TX arbitrator performs validation process (loads timestamp words,
executes timestamp comparison, loads metadata and identifier)
and TXT buffer 1 becomes Validated. TX arbitrator signals to
CAN core that there is validated TXT buffer for transmission.

3 SW lIssues Set ready command to TXT buffer 2 FSM goes to Ready state and therefore TXT buffer

TXT buffer 2. 2 becomes Available from TX arbitrators point of view. As TXT

buffer 2 has higher priority than TXT buffer 1, TXT buffer 2
becomes Selected by Priority decoder.

4 TXT buffer validation process restarts with TXT buffer 2. During
validation of TXT buffer 2, TXT buffer 1 remains Validated (TXT
buffer 1 is still Available). If during validation process of TXT
buffer 2, Protocol control issued HW Lock command, transmission
would still start from TXT buffer 1.

5 TX arbitrator finishes validation process (loads timestamp words,
executes timestamp comparison, loads metadata) of TXT buffer 2.
At the end, TXT buffer 2 becomes Validated, and TXT buffer 1
(which was Validated till now) becomes Available.

6 Protocol control issues Lock command and since TXT bufer 2 is
now Validated, transmission starts from TXT buffer 2. TX
arbitrator becomes Locked.

Note: The implementation performs validation of a TXT buffer while another TXT buffer is still Validated. Only
when validation process is finished, index of Validated TXT buffer will be changed to the new TXT buffer. The
reason is following: If TXT buffer is validated, and SW decides to issue Set ready to another TXT buffer which
is higher priority, Lock command might arrive just slightly after this moment (SW and Protocol control have
no synchronisation). If first TXT buffer did not remain validated during validation process of new TXT buffer,
tran_frame valid signal would drop low before the validation process of second TXT buffer is finished. This
would cause that for short time, Protocol control would not have any TXT buffer available for transmission, while
actually two TXT buffers are in Ready state. This effect is undesirable.

Note: Due to meta-data double buffering, validated TXT buffer is swapped atomically (TXT buffer index, identifer
and loaded metadata) from Protocol control point of view. Thus it can never happen that inconsistent frame is
transmitted (e.g. metadata from one TXT buffer and data words from another TXT buffer).

Note: This behaviour is necessary, since TXT buffer which is Validated suddenly becomes Unavailable due to Set Abort
command. If tran_frame_valid signal did not drop low immediately, it could happend that Protocol control
would issue Lock command on a TXT buffer which was Unavailable (in Aborted state).

70

&%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/i:f Version 0.21, Commit:5d16182, 2026-02-01

Table 4.42: TX arbitrator - use-case 2

Step External action (SW or external HW Action
components)
1 SW configures TXT buffer 1 priority to 1, | TXT buffers 1 and 2 become Available, and TXT buffer 2

and TXT buffer 2 priority to 2. SW fills becomes Selected because it has higher priority than TXT
TXT buffer 1 and TXT buffer 2 RAMs by | buffer 1.

CAN frames. SW Issues Set ready
command to TXT buffer 1 and TXT
buffer 2 simultaneously.

2 TX arbitrator performs TXT buffer 2 validation process
(loads timestamp words, executes timestamp comparison,
loads metadata and identifier) and TXT buffer 2 becomes
Validated. TX arbitrator signals to CAN core that there is
Validated TXT buffer for transmission.

3 SW lIssues Set abort command to TXT TXT buffer 2 which is now Validated becomes Unavailable.
buffer 2. TX arbitrator immediately (in the same clock cycle) signals
to CAN core that no TXT buffer is available for transmission
(tran_frame valid signal drops low).

4 Since TXT buffer 1 is now only Available TXT buffer, it
becomes Selected.

TX arbitrator proceeds with validation of TXT buffer 1, and
upon its end TXT buffer 1 becomes Validated. TX arbitrator
signals that there is a frame available for transmission.

Table 4.43: TX arbitrator - use-case 3

Step External action (SW or external HW Action
components)

1 SW stores a frame to a TXT buffer | TXT buffer 1 becomes available from TX Arbitrator point of view.
1 and issues Set ready command.

2 TX Arbitrator starts validating TXT buffer 1. It reads out

Metadata, Identifier, Timestamp Low/High words. During each of
these words, it checks that parity of word being read is correct. If
not, it stops validation of this TXT buffer, and it signals this to
TXT buffer 1.

3 TXT buffer 1 moves to Parity Error state.

4.5.2 Priority decoder

File: priority decoder.vhd

Priority decoder selects highest priority TXT buffer from all Available TXT buffers. Such TXT buffer becomes Selected.
Priority of TXT buffers is given by SW (TX _PRIORITY register). If no TXT buffer is Available, Priority decoder signals
it on its output, and no TXT buffer is Selected (TXT buffer validation does not start). If two Available TXT buffers
have equal priority, TXT buffer with lower index is selected. Priority decoder provides index of Selected TXT buffer on
1ts output.

Priority decoder is implemented as comparator tree with 3 levels (see Figure 4.28). Each level contains so called “decoder
cells”. Decoder cell selects higher priority TXT buffer from two TXT buffers. Each decoder cell behaves like so:

71

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

R

e When only one of the two TXT buffers is Available it is automatically selected, its index is propagated as winner
of comparison and “Available” output of this decoder cell is high.

e When no TXT buffer input is Available, output _valid signal is low.

e When both TXT buffer inputs are Available, output_ valid signal is high and index TXT buffer with higher priority
is propagated as winner.

Priority decoder supports up to 8 input TXT buffers. If less than 8 TXT buffers are configured (see txt_ buffer _count),
unused inputs are tied to zeroes.

priority_decoder
Level 1 Level 2 Level 3
TXT Buffer 1 priority R Priority
TXT Buffer 1 available : Available
- — > Decoder [winner l
TXT Buffer 2 priority > cell ¥ y
TXT Buffer 2 available] Priority
Decoder | Available

TXT Buffer 3 priority R cell Winner
TXT Buffer 3 available 4

> Decoder Priority n '
TXT Buffer 4 priorit

P - y » cell Available T Y ¥ Available
TXT Buffer 4 available > Winner >
T Buffer S oriori Priority Decoder TXT Buffer
uffer 5 priority ind

> - cell | Index
TXT Buffer 5 available Available

> Decoder [Winner
TXT Buffer 6 priority N ol VYV 444
TXT Buffer 6 available - Priority

Decoder |Available
TXT Buffer 7 priority _ cell Winner
TXT Buffer 7 available :
cor 8 orfort > Decoder |Priority X
TXT Buffer 8 priority > cell Available T
TXT Buffer 8 available N Winner
Figure 4.28: Priority decoder block diagram

72

ﬂ)<
R

CTU CAN FD IP Core - System Architecture

Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

4.5.3 TXT buffer change between transmissions

Table 4.44: Selected TXT buffer changed between transmissions

Step

SW action HW action / State

SW fills TXT buffer 1 RAM. SW enables | TXT buffer 1 FSM is in Empty State.

retransmitt limitation and configures
Retransmitt limit to 5.

SW issues Set ready command to TXT TXT buffer 1 FSM moves to Ready state. TXT buffer 1
buffer 1. becomes Available from TX arbitrators point of view.

TX arbitrator performs validatation and TXT buffer 1
becomes Validated, TX arbitrator signals this to CAN core.

CAN core issues Lock command and starts transmitting from
TXT buffer 1. TXT buffer 1 becomes Used and TXT buffer
1 FSM goes to TX in progress state

incremented to 1.

An error frame occurs or arbitration is lost. Protocol control
signals Unlock - arbitration lost or Unlock - error frame”
commands. TXT buffer 1 becomes Unavailable , TXT buffer
1 FSM moves to Ready and Retransmitt counter is

SW fills TXT buffer RAM 2. SW Issues TXT buffer 2 moves to Ready state. Lets assume TXT
Set ready command to TXT buffer 2. buffer 2 has higher priority than TXT buffer 1.

higher priority.

Now there are two Available TXT buffers (1 and 2). TXT
buffer 2 becomes Selected by Priority decoder because it has

TX arbitrator performs validation and TXT buffer 2 becomes
Validated, TX arbitrator signals this to CAN core.

CAN core issues Lock command, TXT buffer 2 becomes
Used (transmission starts by CAN core). At this moment
Retransmitt counter is cleared because TXT buffer used for
current transmission (TXT buffer 2) is different from the one
for previous transmission (TXT buffer 1). (counting
retransmissions on TXT buffer 2 shall not include one
previous failed transmission from TXT buffer 1, because it is
different CAN frame being transmitted).

4.5.4 TX Arbitrator corner-cases

TX arbitrator must react on following events which are all not synchronized:

e Change of TXT buffer priorities by SW -> possibly change of Selected TXT buffer.

e Change of TXT buffer state (due to SW commands) -> possibly change of Selected TXT buffer.

e Lock command from Protocol control.

Handling of these events is resolved like so:

e Lock command shall never occur when TX Arbitrator FSM is Idle.

e Unlock command shall never occur when TX Arbitrator FSM is not Locked.

73

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
JXFS Version 021, Commit:5d16182, 2026-0-01

e Lock command shall only occur when there is TXT buffer available for transmission, or when it was available for
transmission in previous clock cycle. It might happend, that Lock command and Set abort command are active
simultaneously. Due to Set abort command, it might be that only Available TXT buffer becomes immediately
unavailable, therefore Lock command is active when no Available TXT buffer is signalled. This is OK since TXT
buffer FSM resolves simultaneous Set abort and Lock command.

e Lock command occurs at the same time as Selected TXT buffer is changed. Lock command shall have priority,
and TX Arbitrator FSM shall become Locked.

e TXT buffer validation process is about to be finished, but Lock command occurs. Lock command shall have
priority, TX Arbitrator FSM shall become Locked and Metadata, Identifier capture registers shall not be preloaded!

4.5.5 TXT buffer addressing

During TXT buffer validation process, TX arbitrator is accessing TXT buffer memories and loads Frame format, Identifier,
Timestamp low and Timestamp High words, therefore TXT buffer RAM address on port B is given by TX arbitrator
FSM.

During transmission when TX arbitrator is Locked, TX arbitrator holds index of Used TXT buffer. During this time,
Protocol control FSM provides address of memory word from which it reads relevant data word for transmission. TX
arbitrator uses this address to drive TXT buffer address and index of Used TXT buffer to multiplex read data. Data
memory words (see 3.10) are addressed during transmission of data field and Protocol control transmitts value of data
field from these memory words. Each next 4 bytes of data field correspond to one memory word in TXT buffer RAM.
From output of TXT buffer RAM, this memory word is loaded to TX shift register and transmitted from there (see 4.1.1).
Therefore Protocol control provides address of data word with sufficient reserve to cover latency of TXT buffer RAM
as is shown in Table 4.45. Metadata and Identifier for transmission are available from capture registers in TX arbitrator
which were loaded during TXT buffer validation process.

Table 4.45: TXT buffer RAM adressing during transmission

CAN frame field Memory word in TXT buffer Meaning of data loaded to TX shift register
addressed by Protocol control

DLC Data word 0 data field bytes 0 .. 3

data field byte N * 4 -1 | Dataword N + 1 data field bytes (N * 4) to (N + 1) * 4

456 TXT buffer RAM access

TXT buffer RAM has clock gating implemented if target technology = 0 (ASIC). In such case, clocks are enabled only
when there are write (by user) or read accesses (by TX Arbitrator or Protocol control FSM) to RAM. If TX Arbitrator
is performing TXT buffer validation process, the clocks are ungated during this process since TX Arbitrator is reading
metadata words from TXT buffer RAM. If Protocol control FSM is reading data words (during transmission of data field),
TXT buffer RAM clocks are ungated when new word shall be read (when read pointer is updated by Protocol control
FSM).

4.5.7 TX frame timestamp comparison

Part of TXT buffer validation process is comparison of timestamp input with timestamp of CAN frame in TXT buffer
which is currently being validated. If timestamp input is lower than timestamp of CAN frame in currently validated

74

2 CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
JXFS Version 021, Commit:5d16182, 2026-0-01

TXT buffer, validation process is paused. When timestamp input is equal to, or higher than timestamp of CAN frame
in currently validated TXT buffer, TXT buffer validation proceeds. If during this time index of Selected TXT buffer
changes, validation process is restarted.

Comparison of timestamps provides the Time triggered transmission functionality as is described in 9.2 of [1]. Only when
timestamp input passes (desired moment of transmission passes), TXT buffer is admited for transmission to CAN core.
This does not mean that CAN core will transmit the frame immediately! CAN core will transmitt such frame in nearest
bus idle, or when it samples dominant bit during third bit of intermission. Since TXT buffer validation process takes 6
clock cycles, timestamp input must reach TX frame timestamp at latest 6 clock cycles of System clock before sample
point of a bit to be considered for transmission from following bit on CAN bus. Mismatch between the time when frame
validation finishes due to transmitted frame timestamp passing, and sample point of SOF bit can be up to two bit times
as is demonstrated in Figure 4.29. This situation can be avoided if change of time is synchronized in a system with
sufficiently large period of counting on timestamp input (close to Bit time period).

Bit time segment TSEG1 H TSEG2 X TSEG1 X TSEG2 X TSEG1 H TSEG2
Protocol control Idle X SOF
Lock /_\
TXT buffer FSM state Ready X TXin progress

CAN TX

Timestamp nput

TX frame timestamp

% %

Timestamp passed

TXT Buffer validated | ¥

Nearly two bil times between reaching desired transmission time and sample point of SOF

Figure 4.29: Time triggered transmission

Consider having two TX frames with timestamps 10 (in TXT buffer 1) and 50 (in TXT buffer 2). Lets assume that TXT
buffer 2 has higher priority, and it is therefore Selected and validation process is in progress. It finishes its validation when
timestamp input becomes 50. Although CAN frame in TXT buffer 1 has lower timestamp, it is transmitted after frame
from TXT buffer 2 because TXT buffer 2 has higher priority! Therefore TXT buffer priority is at any moment considered
first during TXT buffer selection and CAN frame timestamp is considered only from Selected TXT buffer.

4.5.8 Lock and Unlock commands

Protocol control FSM issues Lock command in third bit of intermission (when it samples dominant bit) or during bus
idle when there is a Validated TXT buffer available. In such case, CTU CAN FD becomes transmitter of the following
CAN frame. After Lock command, TX arbitrator becomes Locked. If there is no TXT buffer Validated so far and TXT
buffer becomes Validated just slightly after Protocol control samples dominant bit during third bit of intermission or bus
idle, unit becomes receiver and frame from Validated TXT buffer is not transmitted. If suspend transmission field is
transmitted and Protocol control samples dominant bit, Protocol control does not issue Lock command and becomes
receiver of following frame.

4.5.9 Metadata double-buffering

During TXT buffer validation process, TX arbitrator first reads Frame format word from TXT buffer RAM and stores it
in internal registers which are invisible to CAN core. In the next step TX arbitrator reads Identifier word from TXT buffer
RAM and stores it to capture register which is available to CAN core. At the same time internal registers with metadata
are moved to capture registers for metadata. Therefore, reading of metadata from TXT buffer RAM is double-buffered.
Both identifier and metadata available for CAN core are changed at once (atomically), therefore it will never happend that

75

sx.ag CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Identifier in capture registers corresponds to different CAN frame than metadata in capture registers. This is necessary
as when there is Validated TXT buffer, another TXT buffer validation process can be in progress. In change was not
atomic, CAN core could issue Lock command and transmitt e.g. ID from TXT buffer 1 and metadata from TXT buffer
2.

4.5.10 TX datapath hazard protection

TX frame datapath (TX arbitrator + TXT buffers) are both manipulated by SW and HW commands simultaneously. This
fact opens question of hazards susceptibility. Such a hazard would occur, when e.g. TXT buffer FSM moved to Aborted
state after Set abort command, but Protocol control FSM still managed to issue Lock command and start transmission
from this TXT buffer. In such case, Protocol control FSM would transmitt from TXT buffer which is Aborted (and
therefore content of its RAM can be modified by SW). Due to combinatorial path between Set abort and indication of
Validated TXT buffer, it never happends that when Set abort command is issued to a TXT buffer, Protocol control FSM
would issue Lock command, therefore this situation will never occur. The relevant combinatorial path is shown in Figure
4.30.

TXT Buffer Priorities
txt_buffer T Buffer tx_arbitrator & TxTBuffer Validated CAN Core
) . Index TXT
Available priority_decoder -
j) TXT Buffer/” Validation Buffer
Available

A/

Protocol
Control
Logic

txt_buffer_fsm

Set
Abort
Command

A4

'y tx_arbitrator_fsm
FSM State

\ 4

HW
Readyy, |_ y Lock

Figure 4.30: TX datapath hazard protection

4.5.11 TX Abort + Retransmitt clear

TODO: This feature is not yet designed! If TXT buffer which is currently Validated or Used becomes “Aborted”, then
retransmitt counter should be also cleared. It can happen that user will abort buffer, replace CAN frame within this
buffer and put ready again. In such a case, retransmitt counter should count only retransmissions of new frame! This
would become epecially important if we went for generic amount of TXT buffers! If config with only 1 TXT buffer was
used, then any abort in actual implementation leaves retransmitt counter untouched and any new frame would start with
this value of retransmitt counter... This could be implemented like so: If TXT buffer FSM moves to Aborted, it gives
a signal. If last TXT buffer that was used for transmission (not Selected one because when abort is applied on TXT
buffer, it will not be Selected!), is equal to index of TXT buffer that just moved to Abort, then retransmitt counter will
be cleared. This still needs to be evaluated.

76

%.%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

4.6 Interrupt Manager
File: int_manager.vhd

Interrupt manager implements following functionality:

e Captures occurence of events/conditions within CTU CAN FD to Interrupt status register.
e Interrupt masking and enabling.

e Generates of level-based Interrupt output.

Occurence of events within CTU CAN FD is captured to Interrupt status register (INT _STAT) register when correspond-
ing interrupt is unmasked. When Interrupt is masked, correponding event is ignored. Interrupt mask is set by writing
logic 1 to corresponding bit of INT _MASK SET register. Interrupt mask is cleared by writing logic 1 to corresponding
bit of INT _MASK _CLR register. When a bit in Interrupt status register is set, it causes int output of CTU CAN FD to
go high when this interrupt is enabled. A bit in Interrupt status register is cleared by writing logic 1 to corresponding bit
in INT _STAT register. Value of int output is given by logical OR of all enabled interrupts which have Interrupt status
equal to logic 1. Interrupt output is registered to be glitch free. Interrupt is enabled by writing logic 1 to corresponding
bit of INT _ENA _SET register. Interrupt is disabled by writing logic 1 to corresponding bit of INT ENA CLR register.
When Interrupt status shall be set at the same clock cycle by an internal event of CTU CAN FD and cleared by write
to INT _STAT register, Interrupt will be set (set has priority over clear). Block diagram of single interrupt datapath is
shown in Figure 4.31. Available types of Interrupts are described in [2].

Interrupt Event/Condition Clear
et Interrupt Set Interrupt
Clear I k —(Status Contribution to
pEE : Interrupt output
Set
—» Interrupt |
Clear I Enable

Figure 4.31: Single interrupt datapath

7

R

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

4. SUB-BLOCKS ARCHITECTURE

4.7 Prescaler

File: prescaler.vhd

Prescaler implements following functionality:

e Measures Time quanta (for both nominal and data bit rates).

e Measures Bit segments (Sync_Seg, Prop Seg, Phase Segl and Phase Seg2).

Hard synchronisation and resynchronisation as defined in [1].
Checks if edge is valid for synchronisation (only one edge between two sample points).

Generates TX trigger and RX triggers for each stage of pipeline.

e Switches between nominal and data bit rates.

Prescaler block diagram is shown in Figure 4.32.

Bit Timing

Configuration

prescaler

bit_time_cfg_capture

Synchronisation

Resynchronization

synchronisation_checker

edge
_>
Sample
control Hard
synchronisation
Ly request

Synchronisation

control

o | Nominal |
Bit Time —
Configuration | bit_time_counters | bit_time_fsm
- | | ‘
| Time Quanta| | Segment lSegment TSEGL, | segment
Edge y y Counter End TSEG2 End
| | Request h 4
]
T
|

bit_segment_meter _| segment_end_detector

edge

________ Segment
———————— End
bit_segment_meter [Request
T =
[Time Quantah A Segment I * Sync Sample
[Edge counter | Request | Request| 1y
| bit_time_counters | trigger_generator Trigger=
' | RX
| __ _pbae_ _| Triggers=

Figure 4.32: Prescaler block diagram

CAN FD standard ([1]) distuiguishes two bit rates: nominal and data. CTU CAN FD implementation distuighushes 3 bit
rate types as shown in Table 4.46. Protocol Control FSM configures correct bit rate in according parts of CAN frame as

explained in [1].

Table 4.46: Bit-Rate types

Bit rate type

Corresponding [1]
bit rate

Description

Nominal Nominal Nominal bit rate for both transmitter and receiver.
Data Data Data bit rate for receiver of CAN FD frame.
Secondary Data Data bit rate for transmitter of CAN FD frame. Secondary sampling

point is used to detect bit error.

Prescaler contains separate logic for both bit rates (nominal and data). Logic for Secondary is the same as for Data.
During bits where bit rate is switched, logic for both bit rates is enabled simultaneously, otherwise only logic for actual

bit rate is enabled.

78

sx.ag CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

4.7.1 Bit rate configuration

Bit rates (nominal and data) are configured by SW when CTU CAN FD is disabled (SETTINGS[ENA] = '0’) in registers
BTR (nominal) and BTR_FD (data). BTR and BTR_FD registers are writable only when SETTINGS[ENA]="0",
otherwise write access to these registers has no effect. Timing parameters for each bit rate are listed in Table 4.47.

Table 4.47: CTU CAN FD bit rate configuration

Parameter name Abbreviation Description

Bit rate prescaler BRP Time quanta = Bit rate prescaler * System clock period
Synchronisation SYNC Length of Synchronisation segment is always 1 time quanta.
segment length

Propagation segment PROP Configured in multiples of time quanta.

length

Phase 1 segment length | PH1 Configured in multiples of time quanta.

Phase 2 segment length | PH2 Configured in multiples of time quanta.

Synchronisation jump SJw Configured in multiples of time quanta.

width

4.7.2 Bit time counters

File: bit time counters.vhd

Bit time counters module contains two counters: Time quanta counter and Segment counter. There are two intstances
of Bit time counters module, nominal (NBTCM) and data (DBTCM).

Time quanta counter measures length of time quanta, and provides information that time quanta has elapsed (tq_edge nbt/dbt=1).
Time quanta has elapsed when Time quanta counter is equal to Bit rate prescaler (therefore dividing the frequency of

System clock by Bit rate prescaler). When Bit rate prescaler is 1, tq_ edge nbt/dbt is active continously, Otherwise

it is active one clock cycle at the end of time quanta. When Bit rate prescaler is 1, time quanta is equal to System clock

period, and Time quanta counter is not running.

Segment counter counts number of time quanta of actual bit segment (counts only when tq _edge nbt/dbt=1).
Prescaler distuiguishes two bit segments: TSEG1 (Sync_Seg + Prop Seg + Phase Segl parts of bit) and TSEG2
(Phase Seg2 part of bit). Segment counter counts from 0, and it is restarted upon the end of previous segment or
upon hard synchronisation. Segment counter for nominal(data) bit rate shall never overflow during nominal(data) bit
rate. Segment counter for nominal bit rate may overflow during data bit rate, and Segment counter for data bit rate
may overflow during nominal bit rate. Current bit rate is determined by Protocol control FSM based on CAN frame field
being transmitted.

NBTCM is enabled always, apart from situations when CTU CAN FD is disabled. This is to make sure, that if error is
detected during data bit rate (DBTCM is being used), NBTCM will be available for measuring duration of Ph2 ASAP
after error was detected. DBTCM is enabled only during data bit rate. During bits of CAN frame where bit rate is
switched, both NBTCM and DBTCM are running. When NBTCM or DBTCM are disabled, none of its both counters
are running (to save power). Both counters are erased when bit time segment ends to force alignment of nominal and
data time quanta in the moment of bit rate switch.

4.7.3 Bit segment meter

File: bit segment meter.vhd

79

%.%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

Bit segment meter module measures length of bit time segments (TSEG1 and TSEG2). Bit segment meter module
maintains Expected segment length register (ESLR). ESLR contains number of time quanta that current bit segment
shall last for. When current bit segment ends, ESLR is loaded with length of following bit segment. Loading of
ESLR is shown in Figure 4.33 for TSEG1 = 10 time quanta, TSEG2 = 5 time quanta and BRP = 2. When positive
resynchronisation occurs (see [1]), ESLR is increased (TSEG1 segment is lengthed) as in Figure 4.34. When negative
resynchronisation occurs (see [1]), ESLR is decreased (TSEG2 is shortened). All rules for loading ESLR are described in
4.48.

Table 4.48: Expected segment length register

Occurs when Loaded to value Description

End of segment TSEG1 due to PH2 Regular end of segment, no
Segment counter equal to Expected synchronisation.

segment length register - 1.

End of segment TSEG2 due to Segment SYNC + PROP + PH1 Regular end of segment, no
counter equal to Expected segment length synchronisation.

register - 1.

Positive resynchronisation with phase error | SYNC + PROP + PH1 + Segment | Segment counter = phase
<= SJW. counter error in this case, therefore

overall efect is as if TSEG1
was re-started with SYNC
completed as in [1].

Positive resynchronisation with phase error | SYNC + PROP + PH1 + SJW Lengthening of TSEG1 by
> SJW. SJW.

Negative resynchronisation with phase SYNC + PROP + PH1 -1 Immediate end of segment.
error <= SJW. TSEG2 ends, therefore

Expected segment length
register is preloaded with
length of TSEGL - 1 (the
same effect as hard
synchronisation).

Negative resynchronisation with phase SYNC + PROP + PH1 Immediate end of segment.
error = SJW + 1. TSEG2 ends since magnitude
of phase error is equal to
amount of SJW. Length of
enxt segment is preloaded.

Negative resynchronisation with phase PH2 - SJW Shortening TSEG2 by SJW.
error > SJW.
Hard synchronisation SYNC + PROP + PH1 -1 TSEGL1 length is subtracted

by 1 since hard
synchronisation shall restart
Bit with SYNC segment
completed according to
11.3.2.3 of [1].

When Segment counter is equal to, or higher than Expected segment length register - 1, Bit segment meter module
issues End of segment request. End of segment request from Bit segment meter can be caused by:

e Segment counter equals Expected segment length - 1. Such a situation is shown in Figure 4.33.

e Immediate end of segment occurs. See Figure 4.35 (SJW = 3).

80

s%%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

Immediate end of segment is signalled when there is negative resynchronisation during TSEG2 and phase error <= SJW.
Immediate resynchronisation causes Segment end request in the same clock cycle when resynchronisation edge occured.
In this situation, TSEG2 segment ends immediately. This special case covers negative resynchronisation with BRP=1 and
phase error <= SJW. The extra clock cycle needed to update Expected segment length register is undesirable, therefore
immediate end of segment was introduced.

System clock |—]

Bit time segment TSEGHT X TSEG2 X TSEGT

Time quanta counter

Expected segment length 10 X 5 X 10

©
P
o
P
-
P
N
P
w
P
N
P
o
P
-
8

Segment counter 7 X 8 X

Segment end / \ / \

Bit time segment

Time quanta counter

Time quanta edge

Expected segment length
Segment counter 1 X 2 Y 3 X 4 X 5 X & Y 7 X 8 X 9o X 10 Y 11 X o X1

Resynchronisation edge / \

Segment end / \

Bit time segment

Time quanta counter

Expected segment length 5 X 10
Segment counter 1 X 2 X 3 X 0 X 1 X 2 X 3 X 4 X 5 X 6 Xz
Phase Error 4 X 3 X 2 X o X 1 X 2 ¥ 3 X 4 ¥ 5 Y 8 Y7
Resynchronisation edge /_\
Segment end /_\

Figure 4.35: Immediate segment end

4.7.4 Segment end detector
File: segment end detector.vhd

Segment end detector determines when segment ends based on requests as shown in Table 4.49. Segment end detector
captures these requests and processes them when time quanta has elapsed (tq_edge nbt/dbt=1). If request arrives
in the same clock cycle as time quanta has elapsed, it is processed immediately and not captured.

81

f&.%gg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/rf Version 0.21, Commit:5d16182, 2026-02-01

Table 4.49: Segment end causes

Request type Issued by Description

Segment end request (Nominal). Bit segment meter (Nominal) Considered only during
nominal bit rate.

Segment end request (Data). Bit segment meter (Data) Considered only during data
bit rate.

Hard synchronisation Synchronisation checker. Considered only during
nominal bit rate. Shall not
occur during data bit rate.

4.7.5 Bit rate switch

Since both Bit time counters (nominal and data) are running in bits where bit rate is switched (BRS and CRC Delimiter),
length of TSEG2 of these bits is measured by both counters, and both Bit segment meter modules can provide Segment
end request. Segment end detector only considers requests from resynchronisation module of actual bit rate as given by
Protocol control FSM (sp _control signal). Bit rate switch is shown in Figure 4.36 (BRP nominal = 2, BRP data =
1, TSEG1 nominal = 10, TSEG1 data = 7, TSEG2 data = 6). Note that in this Figure Time quanta counter, Time
quanta edge, Segment counter and Expected segment length register are different signals for nominal / data bit rate but
“Nominal” version are shown in nominal bit rate and “Data” versions are shown in data bit rate.

Note that in the moment of bit rate switch, Protocol control FSM provides actualized sp _control (bit rate) already in
Process pipeline stage. Sample control is driven by DFF which is bypassed in this moment so that first time quanta of
TSEG2 after bit rate switch is measured with proper bit rate selected!

Bit time segment TSEGH X TSEG2 X TSEG1

Pipeline stage 7777777777727 Noeswifrocest 7777777777772 N Stk X777/
Sample control Nominal X Data
Time quanta counter 0
Time quanta edge __/___/___/
Expected segment length 10 X 6 X 7

Segment counter 7 X 8 X 9

Segment end /_\ /_\

Figure 4.36: Bit rate switch

4.7.6 Prescaler FSM
File: bit time fsm.vhd

Prescaler FSM determines actual bit time segment (TSEG1, TSEG2). lts state transition diagram is shown in Figure
4.37. Prescaler FSM issues requests to generate TX trigger and RX triggers to Trigger generator. TX trigger is requested
upon the end of TSEG2 segment (start of new bit, bit value is transmitted). RX trigger is requested upon the end of
TSEG1 segment (sample point, bit value is sampled).

4.7.7 Trigger generator

File: trigger generator.vhd

82

s%?;g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

SETTINGS_ENA =1’

SETTINGS_ENA =0’

Segment Segment
End End

Figure 4.37: Prescaler FSM

Trigger generator processes requests to generate TX trigger (used to process data in Stuff pipeline stage), and RX triggers
(used to process data in Destuff and Process pipeline stages). Typical scenario is shown in Figure 4.38. As there is no
lower limit on length of TSEG2 from [1], resynchronisation which shortens length of TSEG2 to just one clock cycle can
occur (assuming BRP=1). In such case, RX trigger for Process pipeline stage and TX trigger for Stuff pipeline stage
would overlap. This is not acceptable since Stuff pipeline stage needs Process pipeline stage to be finished before it
can proceed (new transmitted data must be provided by Protocol control FSM before being “stuffed”). To avoid this
situation, TX trigger is shifted by one clock cycle as is shown in Figure 4.39. Stuff pipeline stage is also shifted by one
clock cycle (from last clock cycle of TSEG2 to first clock cycle of TSEG1). As value of information processing time of
CTU CAN FD is 2, this situation corresponds to shortening length of TSEG2 to less than information processing time.
Shifting of TX trigger corresponds to delaying calculation of following bit value after information processing time from
sample point as defined in 11.3.2.4 of [1].

Bit time segment TSEGT = X TSEG2 X TSEG1
Pipeline stage 7777777777777 fesstwikroees(7777777777777 777777277 7250 518 K777
Segment end }:v'—\ ,’_\

Sample request F
RX Trigger 0 Samp‘e,dre\uw Tseg2 ends
RX Trigger 1 i pipe”"is,?ge—\
Sync request ,'.‘
TX Trigger - ;eques.

Figure 4.38: TX, RX triggers

83

s%?/;g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

System clock
Bit time segment TSEG1 = TSEGH
Pipeline stage 77777777727 Joestutikrocess vt k777777777,
Resynchronisation edge TSEGfends K
Resynchronistation
Segment end b \
1
Sample request E
Sample request
RX Trigger 0 " 3 Syne Request
Next pipeline 51a e
RX Trigger 1 ‘ﬁ
Sync request n

I\
TX Trigger Shifted
a/

TX Trigger

i
J

Figure 4.39: TX trigger shift

4.7.8 Synchronisation control

Type of synchronisation is controlled by Protocol control FSM based on current part of CAN frame as is shown in Table
4.50.

Table 4.50: Synchronisation control

Synchronisation Used during Protocol control | Description

type FSM state

Hard Suspend transmission, 2nd or | TSEG1 is started with SYNC segment complement.
synchronisation 3rd bit of intermission, bus

idle, integration,
reintegration, FDF /res bit
edge in CAN FD Frame.

No All other parts Transmitter operating in data bit rate does not synchronise.
synchronisation

No All other parts Node sending dominant bit does not perform
synchronisation resynchronisation or hard synchronisation as a result of

for phase error > positive phase error.

0

Resynchronisation | All other parts All other recessive to dominant edges are used for

resynchronisation.

4.7.9 Synchronisation checker
File: synchronisation checker.vhd

Synchronisation checker determines if synchronisation edge (detected by Bus sampling, see 4.8) is valid for synchroni-
sation accroding to 11.3.2.1 [1]. Synchronisation checker maintains Synchronisation edge flag. This flag is set when
synchronisation edge occurs, and cleared when TSEG1 ends (sample point of bit). If this flag is set, and another synchro-
nisation edge occurs before the flag is cleared, such edge is ignored. Therefore, if there is more than one synchronisation
edge between two consecutive sample points, only first edge is detected as valid edge and other edges are ignored. A
situation where two synchronisation edges are detected (and second one is filtered out) is shown in Figure 4.40. When
synchronisation edge is valid for synchronisation, it causes resynchronisation, hard synchronisation or no synchronisation
according to rules in Table 4.50.

84

s%%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

e inipipinigigigigininipinipiginigininl
Bit time segment TSEGH TSEG2 X TSEGH1 TSEG2
Synchronisation edge ’?’—\ ,7'_\ ,?'_\ X
Valid Synchronisation edge v;.d Igmi’ed Ignged vj“d
Segment end /_‘ & /_\ /_‘ i
Sample Point Sample Point

Figure 4.40: Synchronisation edge filtration

85

s%?/;g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

4.8 Bus sampling
File: bus_sampling.vhd
Bus sampling module implements following functionality:

e Synchronizes can_rx input to System clock domain.

Samples bus in sample point (Destuff pipeline stage).

Detects edges on sampled can _rx and can_tx. Detect synchronisation edges.
e Measures transmitter delay and calculate secondary sample point offset.
e Creates secondary sample point (SSP).

Detects bit error.

Block diagram of Bus sampling is shown in Figure 4.41.

bus_sampling

Synchronisation v) RX Data
Edge data_edge_detector | PreviousSample
b < sample_mux sig_sync | | CAN RX
P RX Data —@ (synchroniser) [~
Measurement v
Control p| trv_delay_meas Secondary Sampling Point Offset
Transceiver Delay ¥
TX Trigger ssp_generator
Secondary Sampling Trigger |
< Bit error bit_error_detector <

<
<
<
<
<

Sample control

Delayed
TX Data tx_data_cache TX Data
CANTX

Figure 4.41: Bus sampling block diagram

Y

Bus sampling implements 2 DFF synchronizer to synchronize asynchronous can_rx input. Output of this synchronizer
is sampled in sample point, and stored to Previous bus value register. Output of this synchronizer is also connected as
data input to Bit destuffing module, therefore bus is sampled in the same moment as input serial data from CAN bus
are processed by Bit destuffing. This synchronizer is clocked with System clock, and it is always enabled.

Bus sampling detects edges on can_rx and can_tx. Edges on can_tx are detected with granularity of System clock
period. Edges on can_rx are detected with granularity of time quanta (Edges are gated by Time quanta edge provided
by Prescaler). Only recessive to dominant edges are detected on can_rx. Furthermore, edge on can_rx is detected only
when bus value (synchronizer output) has opposite value than bus value sampled in previous sample point (Therefore

86

f&ggg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/rf Version 0.21, Commit:5d16182, 2026-02-01

previous sampled bus value must be recessive). Detected edge on can_rx is propagated as synchronization edge to
Prescaler. Edge on can _tx is detected regardless of previous sampled bus value, but only recessive to dominant edges
are detected. A typical scenario of edge detection on can_tx/can_rx is shown in Figure 4.42 (with BRP=2).

System clock
Time quantacounter 0 X 1 X 0 X 1 X 0o X1 X o X1 o)1) oX1YXoX1Ko)t)oxXtyYoxiiyo
Time quanta edge / \ / \ / \ / \ mm

CAN TX a /]
CAN RX N / i
Detected immediately Detected at Tlrx:_uan(a Detected immediately Detedted at Time Quanta
RX (Synchronization) edges d \ J
TX edges H \ 7 \

Figure 4.42: Edge detection

4.8.1 Transmitter delay measurement

File: trv_delay meas.vhd

Transmitter delay is a roundtrip delay from can_tx to can_rx upon transmission of dominant bit. This delay includes
propagation of signal to physical layer transceiver, delay of transceiver and propagation of signal back. Transmitter
delay is measured in CAN FD frames between falling edge of FDF (EDL) bit, and following r0 bit. In CAN 2.0 frames,
Transmitter delay is not measured. Transmitter delay is measured in multiples of System clock (not time quanta) and its
measurement is controlled by Protocol control FSM. Measurement is described in Table 4.51 and shown in Figure 4.43.

Measured transmitter delay can be read out from TRV _DELAY register via SW. Transmitter delay readable from
TRV _DELAY register is shadowed, and the shadowed value is changed upon the end of transmitter delay measure-
ment. Therefore if SW reads TRV _DELAY during measurement, it will read previous measured value. New value will
be read only after the end of current measurement. To read proper value of transmitter delay from TRV _DELAY, at
least one CAN FD frame must have been transmitted since previous reset, otherwise 0 will be read from TRV _DELAY
register.

Table 4.51: Transmitter delay measurement

Step Action

1 Transmitter of CAN FD frame reaches sample point of FDF (EDL) bit. It enables measurement of
transmitter delay.

2 At start of next bit (Stuff pipeline stage, r0 bit), Protocol control transmits dominant bit.

3 An edge on can_tx is detected by Bus sampling. Transmitter delay counter is erased.

4 Transmitter delay counter is incremented by 1 each clock cycle.

5 The dominant value which was transmitted in Step 2, propagates to physical layer transceiver and back to
can_tx input of CTU CAN FD.

6 can rx input is synchronized by 2 DFF synchronizer to System clock domain. Delay of synchronizer is
included in measured transmitter delay.

7 Bus sampling detects edge on can rx. Measurement is finished, new value can bea read from
TRV _DELAY register. -

87

s%?;g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

System clock

Protocol control FSM EDL X r0
Pipeline Stage 77722227 Jeestikrones¥ 777 NSWIEKT 7777777777777
Measurement enable /

Time quanta counter 01 Y0 {1)0 YT {0 Y T) 0T 0 Y AN o0 T X o) 0T)a
Tmequantaedge [~ __ /[_ /[_/ VL /[

CAN TX Mezsurement Start Measurement End
CAN RX
RX edge _\
TX edges _\
Transceiver delay counter 0 6 7
Shadowed Transceiver Delay Previous Transgeiver Delay X 7

b d

Figure 4.43: Transmitter delay measurement

4.8.2 Secondary sampling point offset

Secondary sampling point offset is calculated as offset from start of bit (SyncSeg field) in multiples of System clock.
Secondary sampling point offset can be configured by SW from SSP__ CFG register according to Table 4.52. Secondary
sampling point offset can have values between 0 and 127. If secondary sampling point offset is 0, secondary sampling
point is active in the same clock cycle as TX trigger. If secondary sampling point offset is higher than 127 (e.g. measured
transmitter delay + offset > 127), it is saturated to 127,

Table 4.52: Secondary sampling point configuration

Configuraton name Description

Offset Position of secondary sampling point is fixed at SSP_ CFG[SSP_ OFFSET]. Measured
transmitter delay is not taken into account.

Offset + transmitter Position of secondary sampling point is given as SSP_ CFG[SSP _ OFFSET] +

delay Measured transmitter delay.

No SSP Bit rate within Prescaler is never changed to “Secondary”, it only changes to “Data”
even for transmitter of CAN FD frame, and bus is sampled at moment of data bit rate
sample point.

4.8.3 Secondary sampling point generator

File: ssp_generator.vhd

Secondary sampling point (SSP) is created by delaying TX trigger by the amount of SSP offset as is shown in Figure
444 When bit rate is switched from Nominal to Data, first SSP is delayed from TX trigger by the amount of SSP offset.
As SSP is used to detect bit errors by Transmitters of CAN FD frames during data bit rate, each next SSP is located
whole data bit time later from previous SSP (there is no resynchronisation by Transmitters in data bit rate, so bit time is
not shortened, nor lengthened). The position of first three SSPs is shown in Figure 4.45. The relationship between first
SSPs and next SSPs is used by SSP generator module which creates SSP, and provides it to Bit error detector. Operation
of SSP generator is described in Table 4.53.

88

f&ggg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/rf Version 0.21, Commit:5d16182, 2026-02-01

System clock

Bit time segment TSEGH1 X TSEG2 TSEGH1

TX Trigger /
Secondary Sampling Point /

b<€——————— Secondary Sampling Point Offset ~ ———————=d

Figure 4.44: Secondary sampling point

I I I | I
| 1 1 |
Bit-rate Nominal Data
sample | Start of ssp1 SSP2 ssP3
point bit
CAN frame BRS DLC[3] DLC[2]
I | ssp | DataBit | DataBit |
| | Offset| Time length | Time length |
4>« - -
| | | | I Tlm;

Figure 4.45: Secondary sampling point positions

Table 4.53: SSP generator operation

Step Action

1 CTU CAN FD is transmitter of CAN FD frame where bit rate will be switched.

2 Protocol control switched bit rate in sample point of BRS bit. Protocol control configures SSP generator
to measure length of data bit time and to create first SSP.

3 SSP generator waits for first TX trigger in data bit rate and starts measurement of data bit time length

when TX trigger is active (by means of so called SSP counter (SSPC)). SSP generator starts measuring
delay of SSP offset from TX trigger (by means of so called Bit time measurement counter (BTMC)).

4 When next TX trigger occurs (at start of next bit), SSP generator stops measurement of data bit time in
SSPC. Now SSP generator knows distance between each next SSP (SSPC value).

5 When BTMC reaches value of SSP offset, SSP generator creates first SSP.

6 SSPC is restarted, and position of next sample point starts to be calculated by SSPC. Now the delay of
each next SSP is given by data bit time length (value of BTMC).

7 Step 5 is repeated for each SSP until the end of data phase of CAN FD frame. Note that SSPC can reach

value of SSP offset for first SSP sooner than BTMC measurement will finish (This position occurs when
SSP position is located within the same bit time). This does not mind, since value of BTMC will always
be higher than SSPC, therefore SSPC can count when BTMC is still running.

4.8.4 Bit error detection

File: bit _err detector.vhd

Bit error detection differs for nominal bit rate, data bit rate and Secondary sampling as is shown in Table 4.54. Note
that bit error is detected by Bus sampling always when CTU CAN FD is enabled (SETTINGS[ENA] = 1). Bit error is

89

s%%g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ A3 Version 0.21, Commit:5d16182, 2026-02-01

Table 4.54: Bit Error detectiron

Bit-Rate Detected when Description

Nominal bit rate RX trigger 1 is Detected when can tx value (transmitted value of actual bit) is not
active equal tocan _rx value (sampled bus value).

Data bit rate RX trigger 1 is Detected when can tx value (transmitted value of actual bit) is not
active equal to can_rx value (sampled bus value).

Secondary sample | Secondary sample | Detected when can _tx value on the output of TX data cache is not
point equal to can _rx value (sampled bus value).

only ignored by Error detector module when it is irrelevant as shown in Table 4.16. Bit error detection in nominal bit
rate is shown in Figure 4.46.

System clock |_| |_| |_| |_| |—| |—| |—|

Bit time segment TSEG2 X TSEGH1 X TSEG2 X TSEG1 X TSEG2
TX Trigger / \ / \

RX Trigger 0 / \ / \

RX Trigger 1 ° \ 9 \
|
—_— T
CAN TX a l / h

Transceiver Delay \ CAN TX=CAN ll?X No Bit Error CAN TX /= CAIN RX, Bit Error
CAN RX Y e i
'

/

Bit Error

Figure 4.46: Bit error detection

4.8.5 TX data cache

File: tx data cache.vhd

To detect bit error in Secondary sampling, CTU CAN FD needs to remember can _tx values of several bits transmitted on
CAN bus (secondary sample point can be so late, that it does not fit within the bit itself, and may occurs in following bits,
therefore, a transmitted bit value must be rememebered until secondary sample point). This functionality is implemented
by TX data cache. TX data cache is a FIFO memory with each entry containing a single bit. can _tx value is stored to
TX data cache directly after a bit was transmitted to the bus (SYNC segment, One clock cycle after Stuff pipeline stage).
TX data cache can store up to 8 bit values (therefore allowing 8 bits on the fly). A value is read from TX data cache
when secondary sampling point is active. TX data cache operation together with bit error detection during Secondary
Sampling is shown in Figure 4.47.

System clock

Bit time segment _TSEG2 | TSEG1 X TSEG2 X TSEG1 X TSEG2 X TSEG1 X TSEG2 X TSEG1
TX Trigger [e _/\ /
Secondary Sanple Pont Oft
Secondary Sample Point / \ T \ H s '—L
I |
CAN TX A / Push to TX Data cache
Tarscee Do Pop tom X Data cache
CAN RX s / J. \
-
TX Data cache entries 1 X 2 X 1 X 2 X 1 K 2 o 1 X 2 X 1
TX Data cache output \ "
TX Ot cach ot CAN AX.No i Err TX Ot cach ot CAN A, No i Eror T Data cache cutpul = CAN X, B Eror
Bit Error]

Figure 4.47: TX data cache operation

90

g CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/ 5 Version 0.21, Commit:5d16182, 2026-02-01

4.9 Memory registers

File: memory _registers.vhd

Memory registers implement following functionality:

e Contains configuration and status registers of CTU CAN FD (accessed by SW).

e Issues commands to CTU CAN FD by SW.

e Reads received CAN frame from RX buffer RAM.

o Writes CAN frame to be transmitted to TXT buffer RAMs.

Block diagram of Memory registers is shown in Figure 4.48.

memory_registers

control_registers

Memory

address_decoder
Bus

Y

Register
Select

memory_reg Output

A 4

record

read multiplexor

Input
record

1

test_registers

address_decoder

\4

Register
Select

A 4

memory_reg Output
record

read_multiplexor

Input
record

1

Figure 4.48: Memory registers block diagram

Memory registers contain Control registers and Test registers modules which are generated by [7]. Control registers, Test
Registers and format of CAN frame as is stored in TXT buffers and RX buffer are described in IP-XACT format with

91

sugg CTU CAN FD IP Core - System Architecture 4. SUB-BLOCKS ARCHITECTURE
/tf Version 0.21, Commit:5d16182, 2026-02-01

slight modifications as explained in 4.55. Memory map is edited via Kactus2 tool. Test registers module is present only
when sup _test _regsiters=true.

From one side, Control registers and Test Registers modules are accessed via simple RAM-like memory interface which is
described in 2.1.1. From other side, Control registers and Test Registers modules are accessible via two records: Output
record (signals going from registers modules to rest of CTU CAN FD) and Input record (signals going from rest of CTU
CAN FD to registers modules).

Memory registers block decodes write accesses to TXT buffers (via TXT buffer 1 to TXT buffer 8 memory locations)
and maps these accesses to access TXT buffer RAMs.

4.9.1 Register types

Control registers module contains following types of registers:

Read/Write register

A DFF is instantiated and connected to output record (write value). When register is read, value in this DFF is returned.

Read only register

No DFF is instantiated. When register is read, value from Input record is returned.

Write only register

A DFF is instantiated and connected to output record (write value). When register is read, all zeroes are returned.

Read/Write Once register

A DFF is instantiated and connected to output record (write value). When register is read, value from Input record is
used. This type of register is used when write value has different meaning than read value.

92

CTU CAN FD IP Core - System Architecture
Version 0.21, Commit:5d16182, 2026-02-01

/ﬁ%”(’%‘ 4. SUB-BLOCKS ARCHITECTURE
L2

4.9.2 Register attributes

Registers within Control registers module use additional IP-XACT attributes as is shown in Table 4.55.

Table 4.55: IP-XACT register attributes

IP XACT Attribute Applied on Used on registers | Description
attribute value
Modified clear Register COMMAND, No DFF is instantiated in the register, but
write value field MODE[RST], written value is only combinatorially decoded
INT_STAT, and connected to Output record.
INT_ENA CLR,
INT_ENA_ SET,
INT MASK CLR,
INT MASK SET,
TX_ COMMAND,
CTR_PRES
Is present IP_XACT Register FILTER _* MASK]| Register is instantiated only when VHDL
parameter FILTER_* VAL | generic with the same name as IP-XACT
name parameter is set to “true’. When generic is
“false”, register is not instantiated and its reset
value is returned upon read (if it is readable).
Value of this generic is added to generics of
Control registers module.
Read action | modify Register RX DATA Read signaller module is instantiated. This
field module combinatorially decodes when register
field is being read and provides this information
in Output record. Used to signal to RX buffer
that there is a read from RX _DATA register.
Vendor name= Register EWL/ ERP/ If specified, register is writable only when lock
extension - | register CTR_PRES = 0. If not specified, lock input has no effect.
reglocks/ name This is used to prevent user from writing
regLock EWL/ERP/CTR_PRES unless CTU CAN FD
is in test mode.

93

Bibliography

[1] 1SO11898-1 2015 - Road vehicles, Controller area network, Part 1, Data link layer and signalling
[2] CTU CAN FD - Datasheet

[3] Avalon@ Interface specification, 2018-09-26, Intel

[4] AMBA 3 APB Protocol, v1.0, Specification, ARM

[5] AMBA 3 AHB-Lite Protocol, v1.0, Specification, ARM

[6] CAN with Flexible Data-Rate, Specification, Version 1.0, April 2012, BOSCH

[7] Register map generation tool, https://github.com/Blebowski/Reg_Map_Gen

[8] CTU CAN FD - Testbench architecture

94

https://github.com/Blebowski/Reg_Map_Gen

	Format
	1 General Information
	1.1 Introduction
	1.2 Development tools
	1.3 Design automation
	1.3.1 Register map generation
	1.3.2 Xilinx Vivado component

	1.4 General coding guidlines
	1.5 Source code access
	1.6 ISO11898-1 2015 compliance

	2 Interfaces
	2.1 Memory Bus
	2.1.1 RAM-like interface
	2.1.2 APB
	2.1.3 AHB
	2.1.4 Limitations on 8/16 bit buses

	2.2 CAN Bus
	2.3 Timestamp
	2.4 Clock and reset
	2.5 Test probe
	2.6 Scan enable
	2.7 Configuration options

	3 System architecture
	3.1 Block diagram
	3.2 Reset architecture
	3.3 Clock architecture
	3.4 Testability
	3.4.1 Memory testability

	3.5 Sequential logic
	3.6 Resynchronisers
	3.7 Memories
	3.8 Pipeline architecture and triggers
	3.9 CAN Frame metadata
	3.10 CAN Frame format
	3.11 Test mode
	3.12 Integration vs. Reintegration

	4 Sub-blocks architecture
	4.1 CAN Core
	4.1.1 Protocol control
	Protocol control FSM
	Control counter
	Retransmitt counter
	Error detector

	4.1.2 Operation control
	4.1.3 Fault confinement
	4.1.4 Bit stuffing
	4.1.5 Bit destuffing
	4.1.6 CAN CRC
	4.1.7 Trigger multiplexor
	4.1.8 Bus traffic counters

	4.2 RX buffer
	4.2.1 Storing protocol
	4.2.2 Overrun flags
	4.2.3 Received frame timestamp
	4.2.4 RX buffer Parity
	4.2.5 Reading protocol
	4.2.6 RX buffer RAM

	4.3 Frame Filters
	4.4 TXT buffer
	4.4.1 TXT buffer commands
	4.4.2 TXT buffer RAM
	4.4.3 TXT buffer - Transmission availability
	4.4.4 TXT buffer Parity
	4.4.5 TXT buffer - Use cases

	4.5 TX arbitrator
	4.5.1 TXT buffer validation process
	4.5.2 Priority decoder
	4.5.3 TXT buffer change between transmissions
	4.5.4 TX Arbitrator corner-cases
	4.5.5 TXT buffer addressing
	4.5.6 TXT buffer RAM access
	4.5.7 TX frame timestamp comparison
	4.5.8 Lock and Unlock commands
	4.5.9 Metadata double-buffering
	4.5.10 TX datapath hazard protection
	4.5.11 TX Abort + Retransmitt clear

	4.6 Interrupt Manager
	4.7 Prescaler
	4.7.1 Bit rate configuration
	4.7.2 Bit time counters
	4.7.3 Bit segment meter
	4.7.4 Segment end detector
	4.7.5 Bit rate switch
	4.7.6 Prescaler FSM
	4.7.7 Trigger generator
	4.7.8 Synchronisation control
	4.7.9 Synchronisation checker

	4.8 Bus sampling
	4.8.1 Transmitter delay measurement
	4.8.2 Secondary sampling point offset
	4.8.3 Secondary sampling point generator
	4.8.4 Bit error detection
	4.8.5 TX data cache

	4.9 Memory registers
	4.9.1 Register types
	Read/Write register
	Read only register
	Write only register
	Read/Write Once register

	4.9.2 Register attributes

